Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJonas ObleserUniversity of Lübeck, Lübeck, Germany
- Senior EditorBarbara Shinn-CunninghamCarnegie Mellon University, Pittsburgh, United States of America
Reviewer #1 (Public Review):
Summary:
This paper reports an intracranial SEEG study of speech coordination, where participants synchronize their speech output with a virtual partner that is designed to vary its synchronization behavior. This allows the authors to identify electrodes throughout the left hemisphere of the brain that have activity (both power and phase) that correlates with the degree of synchronization behavior. They find that high-frequency activity in the secondary auditory cortex (superior temporal gyrus) is correlated to synchronization, in contrast to primary auditory regions. Furthermore, activity in the inferior frontal gyrus shows a significant phase-amplitude coupling relationship that is interpreted as compensation for deviation from synchronized behavior with the virtual partner.
Strengths:
(1) The development of a virtual partner model trained for each individual participant, which can dynamically vary its synchronization to the participant's behavior in real-time, is novel and exciting.
(2) Understanding real-time temporal coordination for behaviors like speech is a critical and understudied area.
(3) The use of SEEG provides the spatial and temporal resolution necessary to address the complex dynamics associated with the behavior.
(4) The paper provides some results that suggest a role for regions like IFG and STG in the dynamic temporal coordination of behavior both within an individual speaker and across speakers performing a coordination task.
Weaknesses:
(1) The main weakness of the paper is that the results are presented in a largely descriptive and vague manner. For instance, while the interpretation of predictive coding and error correction is interesting, it is not clear how the experimental design or analyses specifically support such a model, or how they differentiate that model from the alternatives. It's possible that some greater specificity could be achieved by a more detailed examination of this rich dataset, for example by characterizing the specific phase relationships (e.g., positive vs negative lags) in areas that show correlations with synchronization behavior. However, as written, it is difficult to understand what these results tell us about how coordination behavior arises.
(2) In the results section, there's a general lack of quantification. While some of the statistics reported in the figures are helpful, there are also claims that are stated without any statistical test. For example, in the paragraph starting on line 342, it is claimed that there is an inverse relationship between rho-value and frequency band, "possibly due to the reversed desynchronization/synchronization process in low and high frequency bands". Based on Figure 3, the first part of this statement appears to be true qualitatively, but is not quantified, and is therefore impossible to assess in relation to the second part of the claim. Similarly, the next paragraph on line 348 describes optimal clustering, but statistics of the clustering algorithm and silhouette metric are not provided. More importantly, it's not entirely clear what is being clustered - is the point to identify activity patterns that are similar within/across brain regions? Or to interpret the meaning of the specific patterns? If the latter, this is not explained or explored in the paper.
(3) Given the design of the stimuli, it would be useful to know more about how coordination relates to specific speech units. The authors focus on the syllabic level, which is understandable. But as far as the results relate to speech planning (an explicit point in the paper), the claims could be strengthened by determining whether the coordination signal (whether error correction or otherwise) is specifically timed to e.g., the consonant vs the vowel. If the mechanism is a phase reset, does it tend to occur on one part of the syllable?
(4) In the discussion the results are related to a previously-described speech-induced suppression effect. However, it's not clear what the current results have to do with SIS, since the speaker's own voice is present and predictable from the forward model on every trial. Statements such as "Moreover, when the two speech signals come close enough in time, the patient possibly perceives them as its own voice" are highly speculative and apparently not supported by the data.
(5) There are some seemingly arbitrary decisions made in the design and analysis that, while likely justified, need to be explained. For example, how were the cutoffs for moderate coupling vs phase-shifted coupling (k ~0.09) determined? This is noted as "rather weak" (line 212), but it's not clear where this comes from. Similarly, the ROI-based analyses are only done on regions "recorded in at least 7 patients" - how was this number chosen? How many electrodes total does this correspond to? Is there heterogeneity within each ROI?
Reviewer #2 (Public Review):
Summary:
This paper investigates the neural underpinnings of an interactive speech task requiring verbal coordination with another speaker. To achieve this, the authors recorded intracranial brain activity from the left hemisphere in a group of drug-resistant epilepsy patients while they synchronised their speech with a 'virtual partner'. Crucially, the authors were able to manipulate the degree of success of this synchronisation by programming the virtual partner to either actively synchronise or desynchronise their speech with the participant, or else to not vary its speech in response to the participant (making the synchronisation task purely one-way). Using such a paradigm, the authors identified different brain regions that were either more sensitive to the speech of the virtual partner (primary auditory cortex), or more sensitive to the degree of verbal coordination (i.e. synchronisation success) with the virtual partner (secondary auditory cortex and IFG). Such sensitivity was measured by (1) calculating the correlation between the index of verbal coordination and mean power within a range of frequency bands across trials, and (2) calculating the phase-amplitude coupling between the behavioural and brain signals within single trials (using the power of high-frequency neural activity only). Overall, the findings help to elucidate some of the left hemisphere brain areas involved in interactive speaking behaviours, particularly highlighting the high-frequency activity of the IFG as a potential candidate supporting verbal coordination.
Strengths:
This study provides the field with a convincing demonstration of how to investigate speaking behaviours in more complex situations that share many features with real-world speaking contexts e.g. simultaneous engagement of speech perception and production processes, the presence of an interlocutor, and the need for inter-speaker coordination. The findings thus go beyond previous work that has typically studied solo speech production in isolation, and represent a significant advance in our understanding of speech as a social and communicative behaviour. It is further an impressive feat to develop a paradigm in which the degree of cooperativity of the synchronisation partner can be so tightly controlled; in this way, this study combines the benefits of using pre-recorded stimuli (namely, the high degree of experimental control) with the benefits of using a live synchronisation partner (allowing the task to be truly two-way interactive, an important criticism of other work using pre-recorded stimuli). A further key strength of the study lies in its employment of stereotactic EEG to measure brain responses with both high temporal and spatial resolution, an ideal method for studying the unfolding relationship between neural processing and this dynamic coordination behaviour.
Weaknesses:
One major limitation of the current study is the lack of coverage of the right hemisphere by the implanted electrodes. Of course, electrode location is solely clinically motivated, and so the authors did not have control over this. However, this means that the current study neglects the potentially important role of the right hemisphere in this task. The right hemisphere has previously been proposed to support feedback control for speech (likely a core process engaged by synchronous speech), as opposed to the left hemisphere which has been argued to underlie feedforward control (Tourville & Guenther, 2011). Indeed, a previous fMRI study of synchronous speech reported the engagement of a network of right hemisphere regions, including STG, IPL, IFG, and the temporal pole (Jasmin et al., 2016). Further, the release from speech-induced suppression during a synchronous speech reported by Jasmin et al. was found in the right temporal pole, which may explain the discrepancy with the current finding of reduced leftward high-frequency activity with increasing verbal coordination (suggesting instead increased speech-induced suppression for successful synchronisation). The findings should therefore be interpreted with the caveat that they are limited to the left hemisphere, and are thus likely missing an important aspect of the neural processing underpinning verbal coordination behaviour.
A further limitation of this study is that its findings are purely correlational in nature; that is, the results tell us how neural activity correlates with behaviour, but not whether it is instrumental in that behaviour. Elucidating the latter would require some form of intervention such as electrode stimulation, to disrupt activity in a brain area and measure the resulting effect on behaviour. Any claims therefore as to the specific role of brain areas in verbal coordination (e.g. the role of the IFG in supporting online coordinative adjustments to achieve synchronisation) are therefore speculative.