Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorCatherine ProenzaUniversity of Colorado Anschutz Medical Campus, Aurora, United States of America
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public review):
Summary:
The authors use fluorescence lifetime imaging (FLIM) and tmFRET to resolve resting vs. active conformational heterogeneity and free energy differences driven by cGMP and cAMP in a tetrameric arrangement of CNBDs from a prokaryotic CNG channel.
Strengths:
The data are excellent and provide detailed measures of the probability to adopt resting vs. activated conformations with and without bound ligands.
Weaknesses:
A limitation is that only the cytosolic fragments of the channel were studied.
Reviewer #2 (Public review):
The authors investigated the conformational dynamics and energetics of the SthK Clinker/CNBD fragment using both steady-state and time-resolved transition metal ion Förster resonance energy transfer (tmFRET) experiments. To do so, they engineered donor-acceptor pairs at specific sites of the CNBD (C-helix and β-roll) by incorporating a fluorescent noncanonical amino acid donor and metal ion acceptors. In particular, the authors employed two cysteine-reactive metal chelators (TETAC and phenM). This allowed to coordinate three transition metals (Cu2+, Fe2+, and Ru2+) to measure both short (10-20 Å, Cu2+) and long distances (25-50 Å, Fe2+, and Ru2+). By measuring tmFRET with fluorescence lifetimes, the authors determined intramolecular distance distributions in the absence and presence of the full agonist cAMP or the partial agonist cGMP. The probability distributions between conformational states without and with ligands were used to calculate the changes in free energy (ΔG) and differences in free energy change (ΔΔG) in the context of a simple four-state model.
Overall, the work is conducted in a rigorous manner, and it is well-written.
In terms of methodology, this work provides a further support to steady-state and time-resolved tmFRET approaches previously developed by the authors of the present work to probe conformational rearrangements by using a fluorescent noncanonical amino acid donor (Anap) and transition metal ion acceptor (Zagotta et al., eLife 2021; Gordon et al., Biohpysical Journal 2024; Zagotta et al., Biohpysical Journal 2024).
For what concerns Cyclic nucleotide-binding domain (CNBD)-containing ion channels, the literature on this subject is vast and the authors of the present work have significantly contributed to the understanding of the allosteric mechanism governing the ligand-induced activation of CNBD-containing channels, including a detailed description of the energetic changes induced by ligand binding. Particularly relevant are their works based on DEER spectroscopy. In DeBerg et al., JBC 2016, the authors described, at atomic details, the conformational changes induced by different cyclic nucleotides on the HCN CNBD fragment and derived energetics associated with ligand binding to the CNBD (ΔΔG). In Collauto et al., Phys Chem Chem Phys. 2017, they further detailed the ligand-CNBD conformational changes by combining DEER spectroscopy with microfluidic rapid freeze quench to resolve these processes and obtain both equilibrium constants and reaction rates, thus demonstrating that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational changes.
In the revised manuscript the authors better framed their work in light of the literature by highlighting novelty and limitations, in particular the decision to work with the isolated Clinker/CNBD fragment and not with the full-length protein.
Reviewer #3 (Public review):
Summary:
The manuscript by Eggan et al provides insights into conformational transitions in the cyclic nucleotide binding domain of a cyclic nucleotide-gated (CNG) channel. The authors use transition metal FRET (tmFRET) which has been pioneered by this lab and previously led to detailed insights into ion channel conformational changes. Here, the authors not only use steady-state measurements but also time-resolved, fluorescence lifetime measurements to gain detailed insights into conformational transitions within a protein construct that contains the cytosolic C-linker and cyclic nucleotide binding domain (CNBD) of a bacterial CNG channel. The use of time-resolved tmFRET is a clear advancement of this technique and a strength of this manuscript.
In summary, the present work introduces time-resolved tmFRET as a novel tool to study conformational distributions in proteins. This is a clear technological advance. The limitations of the truncated construct used in this study and how they relate to the energetics in full-length CNG channels are discussed. It will be interesting to see in the future how results compare to similar measurements on full-length channels, for example, reconstituted into nanodiscs.
Strengths:
The results capture known differences in promoting the open state between different ligands (cAMP and cGMP) and are consistent across three donor-acceptor FRET pairs. The calculated distance distributions are further in agreement with predicted values based on available structures. The finding that the C-helix is conformationally more mobile in the closed state as compared to the open state quantitatively increases our understanding of conformational changes in these channels.
Weaknesses:
The results describe movements of the C-helix in CNBDs, but detailed energetics as calculated in this study, need to be limited to the truncated protein construct. This is a weakness that cannot be overcome easily as it will require future experiments using the full-length channel.
The data only describe movements of the C-helix. Upon ligand binding, the C-helix moves upwards to coordinate the ligand. Thus, the results are ligand-induced conformational changes (as the title states). Allosteric regulation usually involves remote locations in the protein, which is applicable only in a limited fashion here.