Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorEvelyn TelferUniversity of Edinburgh, Edinburgh, United Kingdom
- Senior EditorAdèle MarstonUniversity of Edinburgh, Edinburgh, United Kingdom
Reviewer #1 (Public review):
Summary:
Gekko, Nomura et al., show that Drp1 elimination in zygotes using the Trim-Away technique leads to mitochondrial clustering and uneven mitochondrial partitioning during the first embryonic cleavage, resulting in embryonic arrest. They monitor organellar localization and partitioning using specific targeted fluorophores. They also describe the effects of mitochondrial clustering in spindle formation and the detrimental effect of uneven mitochondrial partitioning to daughter cells.
Strengths:
The authors have gathered solid evidence for the uneven segregation of mitochondria upon Drp1 depletion through different means: mitochondrial labelling, ATP labelling and mtDNA copy number assessment in each daughter cell. Authors have also characterised the defects in cleavage mitotic spindles upon Drp1 loss
Weaknesses:
This study convincingly describes the phenotype seen upon Drp1 loss. Further studies should be conducted to elucidate the mechanism by which Drp1 ensures even mitochondrial partitioning during the first embryonic cleavage.
Reviewer #2 (Public review):
Gekko et al investigate the impact of perturbing mitochondrial during early embryo development, through modulation of the mitochondrial fission protein Drp1 using Trim-Away technology. They aimed to validate a role for mitochondrial dynamics in modulating chromosomal segregation, mitochondrial inheritance and embryo development and achieve this through the examination of mitochondrial and endoplasmic reticulum distribution, as well as actin filament involvement, using targeted plasmids, molecular probes and TEM in pronuclear stage embryos through the first cleavages divisions. Drp1 deletion perturbed mitochondrial distribution, leading to asymmetric partitioning of mitochondria to the 2-cell stage embryo, prevented appropriate chromosomal segregation and culminated in embryo arrest. Resultant 2-cell embryos displayed altered ATP, mtDNA and calcium levels. Microinjection of Drp1 mRNA partially rescued embryo development. A role for actin filaments in mitochondrial inheritance is described, however the actin-based motor Myo19 does not appear to contribute.
Overall, this study builds upon their previous work and provides further support for a role of mitochondrial dynamics in mediating chromosomal segregation and mitochondrial inheritance. In particular, Drp1 is required for the redistribution of mitochondria to support symmetric partitioning and ongoing development.
Strengths:
The study is well designed, the methods are appropriate and the results are clearly presented. The findings are nicely summarised in a schematic.
The addition of further quantification, including mitochondrial cluster size, elongation/aspect ratio and ROS, as requested by the reviewers, has provided further evidence for the impact of Drp1 depletion on mitochondrial morphology and function.
Understanding the role of mitochondria in binucleation and mitochondrial inheritance is of clinical relevance for patients undergoing infertility treatment, particularly those undergoing mitochondrial replacement therapy.
Weaknesses:
The only remaining weakness is that the authors have not undertaken additional experiments to clarify any role for mitochondrial transport following Drp1 depletion.
Reviewer #3 (Public review):
Why mitochondria are finely maintained in the female germ cell (oocyte), zygotes, and preimplantation embryos? Mitochondrial fusion seems beneficial in somatic cells to compensate for unhealthy mitochondria, for example, mitochondria with mutated mtDNA that potentially defuel the respiratory activity if accumulated above a certain threshold. However, in the germ cells, it may rather increase the risk of transmitting mutated mtDNA to the next generation. Also, finely maintained mitochondria would also be beneficial for efficient removal when damaged, as the authors briefly discussed. Due in part to the limited suitable model, physiological role of mitochondrial fission in embryos were obscure. In this study, authors demonstrated that mitochondrial fission prevents multiple adverse outcomes, especially including the aberrant demixing of parental genome (a clinical phenotype of human embryos) in zygotic stage. Thus, this study would be also of clinical importance that could contribute by proposing a novel mechanism.
The authors have adequately indicated the limitations at each of the specific points. The revisions the authors made have consolidated their conclusion, thus still, making this study an excellent one.