A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome

  1. Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing, China
  2. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
  3. Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing, China
  4. CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Carla Rothlin
    Yale University, New Haven, United States of America
  • Senior Editor
    Carla Rothlin
    Yale University, New Haven, United States of America

Reviewer #1 (Public review):

In the manuscript entitled "A VgrG2b fragment cleaved by caspase-11/4 promotes Pseudomonas aeruginosa infection through suppressing the NLRP3 inflammasome", Qian et al. found an activation of the non-canonical inflammasome, but not the downstream NLRP3 inflammasome, during the infection of macrophage by P. aeruginosa, which is in sharp contrast to that by E. coli (Figure 1). In realizing that the suppression of the NLRP3 inflammasome is Caspase-11 dependent, the authors performed a screening among P. aeruginosa proteins and identified VgrG2b being a major substrate of Caspase-11 (Figure 2). Next, the authors mapped the cleavage site on VgrG2b to D883, and demonstrated that cleavage of VgrG2b by Caspase-11 is essential for the suppression of the NLRP3 inflammasome (Figure 3). Furthermore, they found that a binding between the C-terminal fragment of the cleaved VgrG2b and NLRP3 existed (Figure 4), which was then proved to block the association of NLRP3 with NEK7 (Figure 5). Finally, the authors demonstrated that blocking of VgrG2b cleavage, by either mutation of the D883 or administration of a designed peptide, effectively improved the survival rate of the P. aeruginosa-infected mice (Figure 6). This is a well-designed and executed study, with the results clearly presented and stated.

Reviewer #2 (Public review):

Summary:

In their manuscript, Quian and colleagues identified a novel mechanism by which Pseudomonas control inflammatory responses upon inflammasome activation. They identified a caspase-11 substrate (VgrG2b) which, upon cleavage, binds and inhibits the NLRP3 to reduce the production of pro-inflammatory cytokines. This is a unique mechanism that allows for the tailoring of the innate immune response upon bacterial recognition.

Strengths:

The authors are presenting here a novel conceptual framework in host-pathogen interactions. Their work is supported by a range of approaches (biochemical, cellular immunology, microbiology, animal models), and their conclusions are supported by multiple independent evidences. The work is likely to have an important impact on the innate immunity field and host-pathogen interactions field and may guide the development of novel inhibitors.

Weaknesses:

Although quite exhaustive, a few of the authors' conclusions are not fully supported (e.g., caspase-11 directly cleaving VgrG2b, the unique affinity of VgrG2b-C for NLRP3) and would require complementary approaches to validate their findings fully. This is minimal.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation