miR-124 controls male reproductive success in Drosophila

  1. Ruifen Weng
  2. Jacqueline SR Chin
  3. Joanne Y Yew
  4. Natascha Bushati
  5. Stephen M Cohen  Is a corresponding author
  1. Institute for Molecular and Cell Biology, Singapore
  2. National University of Singapore, Singapore
  3. Temasek Life Sciences Laboratory, Singapore
11 figures and 2 tables

Figures

Figure 1 with 1 supplement
Male courtship behavior.

(A) Percentage of males achieving copulation in a 30-min observation period. Genotypes as indicated. Control males were CS. Rescue indicates the miR-124 RMCE allele with miR-124 reintegrated at the …

https://doi.org/10.7554/eLife.00640.003
Figure 1—figure supplement 1
Receptivity of miR-124 mutant females.

5-day-old socially naive CS males were paired individually with 5-day-old CS or miR-124 virgin females and the number of females that accepted copulation over an observation period of 20 min was …

https://doi.org/10.7554/eLife.00640.004
Male–male courtship.

(A) Courtship index comparing CS control and miR-124 mutant flies using decapitated CS or miR-124 mutant males as targets. The number of animals used for each sample is indicated (n:). Scores for …

https://doi.org/10.7554/eLife.00640.005
Figure 3 with 1 supplement
Aberrant pheromone production by miR-124 mutant males.

(A) Normalized cVA level measured by GC-MS in extracts from control, miR-124 mutant, and rescued mutant males. Data represent the average of six independent preparations ± SEM. n = 15 in each …

https://doi.org/10.7554/eLife.00640.007
Figure 3—figure supplement 1
Abundance of cVA on perfumed flies.

DART mass spectrometry was used to assess the efficiency of the perfuming method. miR-124 mutant males perfumed with cVA exhibited more cVA than solvent-perfumed miR-124 mutant males and …

https://doi.org/10.7554/eLife.00640.008
Figure 4 with 1 supplement
Comparison of other social behaviors.

(A) Female mate choice was monitored by videotaping in chambers containing single females and two males of the indicated genotypes. The genotype of the male that succeeded in copulating was …

https://doi.org/10.7554/eLife.00640.009
Figure 4—figure supplement 1
Locomotion assay.

The total distance travelled by single 5-day-old males of the indicated genotypes in a 10 mm courtship chamber was traced and measured for 10 min. The velocity of each genotype was calculated and …

https://doi.org/10.7554/eLife.00640.010
miR-124 acts in the sex differentiation pathway.

(A) Key components of the sexual differentiation system. (B) Courtship index comparing miR-124 mutants and flies expressing a miR-124 sponge under dsx-Gal4 control in males lacking one copy of the …

https://doi.org/10.7554/eLife.00640.011
miR-124 targets transformer.

(A) Predicted pairing of miR-124 to two sites in the traF transcript. (B) Sex-specific splicing results in the formation of a female-specific traF isoform. A non-sex-specific isoform is produced in …

https://doi.org/10.7554/eLife.00640.012
Figure 7 with 1 supplement
miR-124 acts through regulation of transformer.

(A) Elevated expression of traF transcript measured by quantitative real-time PCR using RNA isolated from male flies of the indicated genotypes (primer pair p3 and p4). actin 42A was used as an …

https://doi.org/10.7554/eLife.00640.013
Figure 7—figure supplement 1
Amplification of traF shown by quantitative real-time RT-PCR.

(A) Detection of traF transcript in heads from 5-day-old control females (purple line) and 5-day-old males (orange line) was shown by the amplification curves from real-time quantitative RT-PCR …

https://doi.org/10.7554/eLife.00640.014
Transcript level of dsxM, but not dsxF, is affected by miR-124 loss-of-function.

Expression of dsxM (A) dsxF (B) transcripts measured by quantitative real-time PCR using RNA isolated from male flies of the indicated genotypes. actin 42A was used as an internal control for …

https://doi.org/10.7554/eLife.00640.016
miR-124 sites on desat1 and elo68α transcripts.

Left: sequences of two potential miR-124 sites in desat1 transcript. Top: a 6-mer site in the coding sequence common to all the isoforms; Bottom: an unconventional site with 2 GU base pairs in the …

https://doi.org/10.7554/eLife.00640.017
Author response image 1
Author response image 2

Tables

Table 1

GC-MS analysis of cuticular hydrocarbon extracts from control, mir-124 mutant, and rescued mutant males

https://doi.org/10.7554/eLife.00640.006
Compound and elemental composition*Control (n = 6)mir-124 mutant (n = 6)Rescued mutant (n = 6)
C21:0 (nC21)0.46 ± 0.080.32 ± 0.050.76 ± 0.11
C22:10.24 ± 0.010.27 ± 0.020.35 ± 0.02
cVA (cis-vaccenyl acetate)9.36 ± 3.401.75 ± 0.57***6.60 ± 2.17***
C22:00.74 ± 0.060.62 ± 0.020.95 ± 0.05
7,11-C23:20.13 ± 0.010.07 ± 0.0010.12 ± 0.02
9-C23:1 (9-tricosene)1.39 ± 0.131.76 ± 0.251.84 ± 0.14
7-C23:1 (7-tricosene)23.52 ± 1.1724.92 ± 1.7432.80 ± 2.03***
5-C23:1 (5-tricosene)2.71 ± 0.113.06 ± 0.203.01 ± 0.18
C23:0 (nC23)10.57 ± 0.4011.21 ± 0.2512.66 ± 0.63**
C24:10.32 ± 0.110.37 ± 0.090.30 ± 0.07
C24:00.36 ± 0.020.43 ± 0.040.35 ± 0.03
2-MeC241.44 ± 0.081.58 ± 0.152.03 ± 0.12
C25:20.52 ± 0.060.71 ± 0.070.70 ± 0.04
9-C25:1 (9-pentacosene)4.80 ± 0.616.33 ± 0.65*4.11 ± 0.74
7-C25:1 (7-pentacosene)22.99 ± 1.5525.62 ± 0.63***11.61 ± 1.16***
5-C25:1 (5-pentacosene)1.10 ± 0.330.79 ± 0.022.38 ± 0.01
C25:0 (nc25)2.34 ± 0.153.13 ± 0.032.52 ± 0.15
2-MeC266.75 ± 0.495.37 ± 0.086.55 ± 0.13
9-C27:10.16 ± 0.020.19 ± 0.030.12 ± 0.04
7-C27:10.97 ± 0.100.77 ± 0.070.29 ± 0.06**
C27:0 (nC27)1.66 ± 0.332.42 ± 0.601.86 ± 0.39
2-MeC285.90 ± 0.815.95 ± 0.716.18 ± 0.77
C29:00.37 ± 0.110.78 ± 0.260.54 ± 0.17
2-MeC300.64 ± 0.160.99 ± 0.270.87 ± 0.25
  1. *

    The elemental composition is listed as the carbon chain length followed by the number of double bonds; 2-Me indicates the position of methyl branched compounds.

  2. The normalized signal intensity for each compound and SEM is indicated; *p<0.05, **p<0.01, ***p<0.001 when compared to control (ANOVA followed by post-hoc Tukey HSD test).

Table 2

GC-MS analysis of cuticular hydrocarbon extracts from control, miR-124 mutant, rescued mutants, and miR-124>tra-RNAi males

https://doi.org/10.7554/eLife.00640.015
Compound and elemental composition*Control (n = 3)mir-124 mutant (n = 3)Rescued mutant (n = 3)mir-124> tra-RNAi (n = 2)
C21:0 (nC21)0.28 ± 0.10.21 ± 0.010.51 ± 0.030.35 ± 0.04
C22:10.22 ± 0.020.24 ± 0.010.31 ± 0.020.34 ± 0.03
cVA (cis-vaccenyl acetate)3.86 ± 0.430.48 ± 0.04***2.57 ± 0.47*2.09 ± 0.23*
C22:00.61 ± 0.030.60 ± 0.010.87 ± 0.050.70 ± 0.05
7,11-C23:20.14 ± 0.010.07 ± 0.0010.17 ± 0.020.11 ± 0.02
9-C23:1 (9-tricosene)1.10 ± 0.051.20 ± 0.021.57 ± 0.121.94 ± 0.07
7-C23:1 (7-tricosene)21.68 ± 1.1421.04 ± 0.2929.07 ± 2.12***28.95 ± 2.20***
5-C23:1 (5-tricosene)2.56 ± 0.052.62 ± 0.052.71 ± 0.253.11 ± 0.40
C23:0 (nC23)9.84 ± 0.1510.66 ± 0.0611.33 ± 0.2*10.35 ± 0.33
C24:10.09 ± 0.050.19 ± 0.010.16 ± 0.020.22 ± 0.01
C24:00.41 ± 0.010.52 ± 0.010.40 ± 0.030.44 ± 0.01
2-MeC241.52 ± 0.131.24 ± 0.021.81 ± 0.151.78 ± 0.09
C25:20.41 ± 0.020.54 ± 0.020.74 ± 0.010.76 ± 0.06
9-C25:1 (9-pentacosene)6.13 ± 0.127.78 ± 0.05**5.74 ± 0.216.86 ± 1.02
7-C25:1 (7-pentacosene)26.01 ± 0.6926.97 ± 0.2514.09 ± 0.46***23.23 ± 1.15***
5-C25:1 (5-pentacosene)1.41 ± 0.680.75 ± 0.01023 ± 0.020.59 ± 0.03
C25:0 (nc25)2.65 ± 0.063.79±0.052.85 ± 0.072.68 ± 0.26
2-MeC267.72 ± 0.285.22 ± 0.01***6.64 ± 0.275.23 ± 0.21***
9-C27:10.20 ± 0.010.25 ± 0.010.20 ± 0.020.18 ± 0.05
7-C27:11.15 ± 0.090.92 ± 0.020.41 ± 0.010.60 ± 0.08
C27:0 (nC27)2.38 ± 0.123.77 ± 0.08*2.72 ± 0.161.92 ± 0.21
2-MeC287.66 ± 0.137.53 ± 0.057.85 ± 0.375.76 ± 0.33**
C29:00.62 ± 0.061.37 ± 0.010.92 ± 0.10.52 ± 0.05
2-MeC300.98 ± 0.061.59 ± 0.031.41 ± 0.130.66 ± 0.02
  1. *

    The elemental composition is listed as the carbon chain length followed by the number of double bonds; 2-Me indicates the position of methyl branched compounds.

  2. The normalized signal intensity for each compound and SEM is indicated; *p<0.05, **p<0.01, ***p<0.001 when compared to control (ANOVA followed by post-hoc Tukey HSD test).

Download links