Development: Computing away the magic?

  1. Michael Levine  Is a corresponding author
  1. University of California, Berkeley, United States

Multicellular organisms employ a variety of mechanisms to ensure that genes are expressed at the right time and place throughout their life cycles. The transcription of DNA into RNA is augmented by activators and diminished by repressors. Both classes of regulatory proteins bind to specific sequences contained within enhancers, which are the key agents of gene regulation in higher organisms. Elucidating how enhancers work is critical for understanding gene regulation in development and disease.

It is over 30 years since Banerji and Schaffner discovered that enhancers can be physically separate from the genes they regulate (Banerji et al., 1981). Enhancers can map quite far—1 million base pairs or more—from their target genes (Amano et al., 2009). This action at a distance is a defining property of complex organisms, and contrasts with what happens in simple bacteria, where most activator and repressor binding sites are found quite close to their target genes (see, e.g., Levine and Tjian, 2003).

One of the most widely studied enhancers is the eve stripe 2 enhancer in the fruit fly Drosophila melanogaster (Small et al., 1992). The body of the Drosophila embryo is made up of 14 segments, and a gene called eve (even-skipped) is expressed in the even-numbered segments, giving rise to a distinctive pattern of seven stripes (Figure 1A). It was initially thought that the long-range diffusion of morphogens (Turing, 1952)—signaling molecules that influence tissue development through their formation of concentration gradients—coordinated the expression of all seven eve stripes (Meinhardt, 1986). The discovery that eve stripe 2 had its own dedicated enhancer led one researcher to complain of the ‘inelegance’ of such a mechanism (Akam, 1989). However, we have now come full circle: I cannot help but complain that the new models for the regulation of eve expression described by Nicholas Luscombe and co-workers in eLife seem to strip the mystique from the eve stripe 2 enhancer (Ilsley et al., 2013).

Regulation of eve stripe 2. The gene eve is expressed in the even-numbered body segments of Drosophila embryos, giving rise to a distinctive pattern of stripes. A, Transgenic embryo expressing an eve.2>lacZ fusion gene. The endogenous eve stripes are stained brown, while stripe 2 is stained blue (Small et al., 1992). B, The transcription factors Krüppel and Giant (repressors) and Bicoid and Hunchback (activators) are expressed in distinct patterns along the Drosophila embryo, and their combined effects dictate the position of eve stripe 2 (Watson et al., 2014). C, Computer simulations can be used to model the expression gradient of Bicoid (left) and the resulting effect on the position of eve stripe 2 (right). A, anterior; P, posterior.

The stripe 2 enhancer is regulated by four different transcription factors in the early Drosophila embryo—two activators, Bicoid and Hunchback; and two repressors, Giant and Krüppel (Small et al., 1992). There are 12 binding sites for these transcription factors distributed over the length of the enhancer, and the combined effects of these four proteins dictate the location of the second eve stripe (Figure 1B). In principle, Bicoid and Hunchback can activate the eve stripe 2 enhancer in the entire anterior half of the embryo (from the head to the anterior thorax); however, localized repressors—Giant and Krüppel—delineate eve expression within the stripe 2 domain.

Luscombe and co-workers—including Garth Ilsley as first author—investigated how these four transcription factors produce the stripe 2 expression pattern (Figure 1B), by combining quantitative imaging with computer simulations of different mathematical models. They used this same approach to model the enhancer that regulates stripes 3 and 7, but for simplicity I will restrict my discussion to stripe 2. The resulting models provide new insights into the mechanisms of stripe formation during development. First, IIsley et al. argue that the order of the Bicoid, Hunchback, Giant and Krüppel binding sites is unlikely to be important for stripe 2 expression. They base this on the observation that models in which the effects of activators can simply be added to those of repressors are sufficient to produce the stripe 2 pattern, and there is no need to assume that activators bound to adjacent sites cooperate with each other to augment their activities. Moreover, there is no indication of nonlinear effects such as ‘repression dominance’, whereby repressors downregulate transcription more than activators upregulate it (Arnosti et al., 1996). Rather, the models call for a simple balance between the effects of activators and those of repressors.

The most interesting implication of this work is that Bicoid might not function solely as an activator (Driever et al., 1989; Struhl et al., 1989). Luscombe and co-workers were able to achieve more faithful simulations of the stripe 2 expression pattern by assuming that Bicoid, which is most abundant in the anterior region of the embryo and gradually declines in concentration towards the posterior end, acts as both an activator and a repressor. Ilsley et al. propose that high levels of Bicoid repress expression of stripe 2 in anterior regions, while lower levels in the more central regions activate its expression (Figure 1C).

The idea that a transcription factor can mediate both activation and repression is not new. However, this is the first time that such a dual mechanism has been suggested for Bicoid, the lynchpin of anterior–posterior patterning. This dual function of Bicoid can explain why eve, and many other segmentation genes, are silent at the anterior pole of the Drosophila embryo (Andrioli et al., 2002).

In summary, the eve stripe 2 enhancer produces an exquisite on/off pattern of expression in response to crude gradients of transcription factors, and its ability to do so has previously been explained by nonlinear interactions between proteins. By arguing against such nonlinearity, Ilsley et al. seemingly strip the magic from the stripe 2 enhancer. But is the magic really gone? How the enhancer determines whether Bicoid functions as an activator or a repressor is uncertain. Hence, I believe that the concept of the enhancer as a template for weak protein interactions is alive and well, and yes, still a mystery.


    1. Andrioli LP
    2. Vasisht V
    3. Theodosopoulou E
    4. Oberstein A
    5. Small S
    Anterior repression of a Drosophila stripe enhancer requires three position-specific mechanisms
    Development 129:4931–4940.
    1. Arnosti DN
    2. Gray S
    3. Barolo S
    4. Zhou J
    5. Levine M
    The gap protein knirps mediates both quenching and direct repression in the Drosophila embryo
    EMBO J 15:3659–3666.
    1. Small S
    2. Blair A
    3. Levine M
    Regulation of even-skipped stripe 2 in the Drosophila embryo
    EMBO J 11:4047–4057.
    1. Watson JD
    2. Baker TA
    3. Bell SP
    4. Gann A
    5. Levine M
    6. Losick R
    Molecular Biology of the Gene
    Molecular Biology of the Gene, 7th ed, Pearson.

Article and author information

Author details

  1. Michael Levine

    Center for Integrative Genomics, Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    Competing interests
    The author declares that no competing interests exist.

Publication history

  1. Version of Record published: August 6, 2013 (version 1)


© 2013, Levine

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,027
    Page views
  • 78
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Levine
Development: Computing away the magic?
eLife 2:e01135.

Further reading

    1. Developmental Biology
    Qiyan Mao et al.
    Research Article Updated

    Human muscle is a hierarchically organised tissue with its contractile cells called myofibers packed into large myofiber bundles. Each myofiber contains periodic myofibrils built by hundreds of contractile sarcomeres that generate large mechanical forces. To better understand the mechanisms that coordinate human muscle morphogenesis from tissue to molecular scales, we adopted a simple in vitro system using induced pluripotent stem cell-derived human myogenic precursors. When grown on an unrestricted two-dimensional substrate, developing myofibers spontaneously align and self-organise into higher-order myofiber bundles, which grow and consolidate to stable sizes. Following a transcriptional boost of sarcomeric components, myofibrils assemble into chains of periodic sarcomeres that emerge across the entire myofiber. More efficient myofiber bundling accelerates the speed of sarcomerogenesis suggesting that tension generated by bundling promotes sarcomerogenesis. We tested this hypothesis by directly probing tension and found that tension build-up precedes sarcomere assembly and increases within each assembling myofibril. Furthermore, we found that myofiber ends stably attach to other myofibers using integrin-based attachments and thus myofiber bundling coincides with stable myofiber bundle attachment in vitro. A failure in stable myofiber attachment results in a collapse of the myofibrils. Overall, our results strongly suggest that mechanical tension across sarcomeric components as well as between differentiating myofibers is key to coordinate the multi-scale self-organisation of muscle morphogenesis.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Marta Perera et al.
    Research Article

    During embryonic development cells acquire identity at the same time as they are proliferating, implying that an intrinsic facet of cell fate choice requires coupling lineage decisions to rates of cell division. How is the cell cycle regulated to promote or suppress heterogeneity and differentiation? We explore this question combining time lapse imaging with single cell RNA-seq in the contexts of self-renewal, priming and differentiation of mouse embryonic stem cells (ESCs) towards the Primitive Endoderm lineage (PrE). Since ESCs are derived from the Inner Cell Mass of the mammalian blastocyst, ESCs in standard culture conditions are transcriptionally heterogeneous containing subfractions that are primed for either of the two ICM lineages, Epiblast and PrE. These subfractions represent dynamic states that can readily interconvert in culture, and the PrE subfraction is functionally primed for endoderm differentiation. Here we find that differential regulation of cell cycle can tip the balance between these primed populations, such that naïve ESC culture conditions promote Epiblast-like expansion and PrE differentiation stimulates the selective survival and proliferation of PrE-primed cells. In endoderm differentiation, we find that this change is accompanied by a counter-intuitive increase in G1 length that also appears replicated in vivo. While FGF/ERK signalling is a known key regulator of ESCs and PrE differentiation, we find it is not just responsible for ESCs heterogeneity, but also cell cycle synchronisation, required for the inheritance of similar cell cycles between sisters and cousins. Taken together, our results point to a tight relationship between transcriptional heterogeneity and cell cycle regulation in the context of lineage priming, with primed cell populations providing a pool of flexible cell types that can be expanded in a lineage-specific fashion while allowing plasticity during early determination.