1. Neuroscience
Download icon

Neuroscience: The tortoise and the hare revisited

  1. Natalia L Kononenko  Is a corresponding author
  2. Arndt Pechstein  Is a corresponding author
  3. Volker Haucke  Is a corresponding author
  1. Leibniz Institut für Molekulare Pharmakologie (FMP) and Neurocure Cluster of Excellence, Charité Universitätsmedizin Berlin, Germany
Cite this article as: eLife 2013;2:e01233 doi: 10.7554/eLife.01233
1 figure


Models of synaptic vesicle endocytosis. (A) In clathrin-based endocytosis, synaptic vesicles collapse fully into the plasma membrane, before being retrieved via a slow process (taking about 10–20 s) mediated by the coat protein clathrin. This occurs at sites distant from the site of fusion. (B) Watanabe et al. propose a new ultrafast mechanism for synaptic vesicle recycling. This process takes roughly one tenth of a second (or less) and involves the formation of large endocytic ‘pits’ devoid of a clathrin coat. Note that both (A) and (B) require the GTPase dynamin to pinch off newly formed endocytic vesicles from the plasma membrane. (C) In the ‘kiss-and-run’ model, synaptic vesicles form a transient pore through which they release their neurotransmitter contents, and are then rapidly recycled (in about a second) at the site of fusion without being absorbed into the membrane.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)