TTC26/DYF13 is an intraflagellar transport protein required for transport of motility-related proteins into flagella

  1. Hiroaki Ishikawa  Is a corresponding author
  2. Takahiro Ide
  3. Toshiki Yagi
  4. Xue Jiang
  5. Masafumi Hirono
  6. Hiroyuki Sasaki
  7. Haruaki Yanagisawa
  8. Kimberly A Wemmer
  9. Didier YR Stainier
  10. Hongmin Qin
  11. Ritsu Kamiya
  12. Wallace F Marshall  Is a corresponding author
  1. University of California, San Francisco, United States
  2. University of Tokyo, Japan
  3. Texas A&M University, United States
  4. The Jikei University School of Medicine, Japan
  5. Osaka University, Japan
  6. Max Planck Institute for Heart and Lung Research, Germany
  7. Faculty of Science, Gakushuin University, Japan
8 figures, 12 videos and 1 additional file

Figures

TTC26 is a conserved ciliary protein.

(A) Phylogenetic tree of TTC26 in various ciliated organisms. All protein sequences were obtained from RefSeq (NCBI). The scale bar represents 0.1 substitutions per nucleotide site. (B) …

https://doi.org/10.7554/eLife.01566.003
Figure 2 with 1 supplement
Knockdown of ttc26 in zebrafish induces shorter cilia and motility defect.

(A) Representative images of heart-looping orientations of control (Left: normal) and ttc26 knockdown (Right: reversed) fish at 2 dpf. myl7-GFP transgenic embryos were injected with control or ttc26

https://doi.org/10.7554/eLife.01566.004
Figure 2—figure supplement 1
ttc26 knockdown zebrafish shows phenotypes typical of defective cilia.

(A) Expression of TTC26 in control and ttc26 knockdown zebrafish. 3 dpf embryos were lysed with 1× SDS sample buffer and detected by Western blotting with TTC26 and actin antibodies. Control, AUG-MO …

https://doi.org/10.7554/eLife.01566.005
C. reinhardtii dyf13 mutant has short flagella and motility defects.

(A) Sequences of the DYF13 gene (RefSeq accession: XM_001698717) in wild-type (CC125) and dyf13 mutant cells. Red underlines show places of mutations. A one-base substitution (c.57C >T) does not …

https://doi.org/10.7554/eLife.01566.010
TTC26/DYF13 is an IFT complex B protein.

(A) Kymographs of GFP-tagged mouse TTC26 and IFT88 moving in cilia of mouse IMCD3 cells. These kymographs were assembled from Videos 7 and 8. Bars: 10 s (horizontal), 5 μm (vertical). (B) The mean …

https://doi.org/10.7554/eLife.01566.013
DYF13 is a part of IFT complex B.

(A) The sucrose density gradient fractions of wild-type flagella. Flagellar matrix was fractionated through a 10–25% sucrose density gradient. The sucrose density gradient fractions were separated …

https://doi.org/10.7554/eLife.01566.016
DYF13 does not influence IFT particle movement.

(A) Kymographs of KAP-GFP in control and dyf13 mutant C. reinhardtii cells. These kymographs were assembled from Videos 9 and 10. Bars: 5 s (horizontal), 5 μm (vertical). (B) The mean IFT speeds of …

https://doi.org/10.7554/eLife.01566.017
DYF13 does not influence localizations and amounts of other IFT proteins.

(A) Immunofluorescence images of wild-type and dyf13 mutant cells. The cells were stained with antibodies to acetylated tubulin (red) and IFT46, IFT70, and IFT122 (green). Bar: 10 μm. (B) Western …

https://doi.org/10.7554/eLife.01566.022
Figure 8 with 1 supplement
dyf13 mutant reduces the levels of inner dynein arm components in its flagella.

(A) Elution patterns of inner-arm dyneins of oda1 single and oda1dyf13 double mutant C. reinhardtii cells. Inner-arm dyneins were extracted with high salt from outer-armless axonemes of oda1 and oda1…

https://doi.org/10.7554/eLife.01566.023
Figure 8—figure supplement 1
dyf13 mutant does not change the levels of outer dynein arm components in its flagella.

(A) Elution patterns of outer-arm and inner-arm dyneins of wild-type and dyf13 mutant C. reinhardtii cells. The elution positions of each dyneins are indicated by αβ, γ (outer-arm), and a–g …

https://doi.org/10.7554/eLife.01566.024

Videos

Video 1
Fluorescent videomicroscopy of fluid flow in the KV of control embryos.

A dorsal view of the KV from a live control embryo at 8–10-somite stage. Fluorescent beads were microinjected into the KV. Images were collected at 5 fps for a total duration of 1 min. Playback is …

https://doi.org/10.7554/eLife.01566.006
Video 2
Fluorescent videomicroscopy of fluid flow in the KV of ttc26 knockdown embryos.

A dorsal view of the KV from a live ttc26 knockdown embryo at 8–10-somite stage. Fluorescent beads were microinjected into the KV. Images were collected at 5 fps for a total duration of 1 min. …

https://doi.org/10.7554/eLife.01566.007
Video 3
High-speed DIC videomicroscopy of KV cilia from control embryos.

A dorsal view of the KV from a live control embryo at 8–10-somite stage. DIC imaging was performed on an inverted microscope with a high-speed camera. Images were collected at 1000 fps for a total …

https://doi.org/10.7554/eLife.01566.008
Video 4
High-speed DIC videomicroscopy of KV cilia from ttc26 knockdown embryos.

A dorsal view of the KV from a live ttc26 knockdown embryo at 8–10-somite stage. DIC imaging was performed on an inverted microscope with a high-speed camera. Images were collected at 1000 fps for a …

https://doi.org/10.7554/eLife.01566.009
Video 5
High-speed DIC videomicroscopy of C. reinhardtii dyf13 mutant cell.

DIC imaging was performed on an inverted microscope with a high-speed camera. Images were collected at 1000 fps for a total duration of 0.16 s. Playback is set at 20 fps (1/50 speed). The dyf13

https://doi.org/10.7554/eLife.01566.011
Video 6
High-speed DIC videomicroscopy of C. reinhardtii wild-type cell.

DIC imaging was performed on an inverted microscope with a high-speed camera. Images were collected at 1000 fps for a total duration of 0.16 s. Playback is set at 20 fps (1/50 speed). The wild-type …

https://doi.org/10.7554/eLife.01566.012
Video 7
Fluorescent videomicroscopy of TTC26-GFP in a cilium of IMCD3 cells.

Images were collected at 10 fps for a total duration of 1 min. Playback is set at 20 fps (2 × speed). TTC26-GFP moves bi-directionally along the cilium. Orientation of cilia in these movies was …

https://doi.org/10.7554/eLife.01566.014
Video 8
Fluorescent videomicroscopy of IFT88-GFP in a cilium of IMCD3 cells.

Images were collected at 10 fps for a total duration of 1 min. Playback is set at 20 fps (2 × speed). IFT88-GFP moves bi-directionally along the cilium.

https://doi.org/10.7554/eLife.01566.015
Video 9
Fluorescent videomicroscopy of KAP-GFP in C. reinhardtii control cell.

Images were collected at 20 fps for a total duration of 20 s. Playback is set at 20 fps (real-time speed). KAP-GFP moves toward the tip of flagella in the control fla3 mutant cell.

https://doi.org/10.7554/eLife.01566.018
Video 10
Fluorescent videomicroscopy of KAP-GFP in C. reinhardtii dyf13 mutant cell.

Images were collected at 20 fps for a total duration of 20 s. Playback is set at 20 fps (real-time speed). KAP-GFP moves toward the tip of flagella in the dyf13 mutant cell.

https://doi.org/10.7554/eLife.01566.019
Video 11
Fluorescent videomicroscopy of IFT27-GFP in C. reinhardtii control cell.

Images were collected at 20 fps for a total duration of 25 s. Playback is set at 20 fps (real-time speed). IFT27-GFP moves toward the tip of flagella in the control pf18 mutant cell.

https://doi.org/10.7554/eLife.01566.020
Video 12
Fluorescent videomicroscopy of IFT27-GFP in C. reinhardtii dyf13 mutant cell.

Images were collected at 20 fps for a total duration of 25 s. Playback is set at 20 fps (real-time speed). IFT27-GFP moves toward the tip of flagella in the dyf13 mutant cell.

https://doi.org/10.7554/eLife.01566.021

Additional files

Supplementary file 1

Results of proteomic analyses.

(A) List of identified IFT proteins from tandem affinity purification of TTC26. (B) List of identified proteins from 2D-DIGE proteomic analysis of wild-type and dyf13 mutant flagella. Ratios 1 and 2 indicate the fold change in protein abundance quantified in each spot, with negative ratio indicating a reduction in quantity relative to wild-type flagella in each experiment.

https://doi.org/10.7554/eLife.01566.025

Download links