Abstract

Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer that controls the differentiation and function of various cellular systems, including hematopoietic cells. miR-142 is one of the most prevalently expressed miRNAs within the hematopoietic lineage. To address the in vivo functions of miR-142 we utilized a novel reporter and loss-of-function mouse allele that we have recently generated. Here, we show that miR-142 is broadly expressed in the adult hematopoietic system. Our data further reveal that miR-142 is critical for megakaryopoiesis. Thus, genetic miR-142 ablation caused impaired megakaryocyte maturation, inhibition of polyploidization, abnormal proplatelet formation, and thrombocytopenia. Finally, we characterize a network of miR-142-3p targets which collectively controls actin filament homeostasis, thereby ensuring proper execution of actin-dependent proplatelet formation. Our study reveals a pivotal role for miR-142 activity in megakaryocyte maturation and function, and demonstrates a critical contribution of a single miRNA in orchestrating cytoskeletal dynamics and normal haemostasis.

Article and author information

Author details

  1. Elik Chapnik

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Natalia Rivkin

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Alexander Mildner

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Gilad Beck

    Weizmann Institute of Science, Revhovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ronit Pasvolsky

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Eyal Metzl-Raz

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Yehudit Birger

    Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Gail Amir

    Hadassah Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Itay Tirosh

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Ziv Porat

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Liron L Israel

    Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Emmanuel Lellouche

    Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Shulamit Michaeli

    Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Jean-paul M Lellouche

    Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  15. Shai Izraeli

    Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  16. Steffen Jung

    Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  17. Eran Hornstein

    Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    eran.hornstein@weizmann.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol of the Weizmann Instituter of Science. The protocol, entitled "miR-142 in hematopoietic lineage development" was approved under Permit Numbers: 02930513-3 and 00350111-1. Every effort was made to minimize suffering.

Copyright

© 2014, Chapnik et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,568
    views
  • 295
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elik Chapnik
  2. Natalia Rivkin
  3. Alexander Mildner
  4. Gilad Beck
  5. Ronit Pasvolsky
  6. Eyal Metzl-Raz
  7. Yehudit Birger
  8. Gail Amir
  9. Itay Tirosh
  10. Ziv Porat
  11. Liron L Israel
  12. Emmanuel Lellouche
  13. Shulamit Michaeli
  14. Jean-paul M Lellouche
  15. Shai Izraeli
  16. Steffen Jung
  17. Eran Hornstein
(2014)
miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis
eLife 3:e01964.
https://doi.org/10.7554/eLife.01964

Share this article

https://doi.org/10.7554/eLife.01964

Further reading

    1. Cell Biology
    Affiong Ika Oqua, Kin Chao ... Alejandra Tomas
    Research Article

    G protein-coupled receptors (GPCRs) are integral membrane proteins which closely interact with their plasma membrane lipid microenvironment. Cholesterol is a lipid enriched at the plasma membrane with pivotal roles in the control of membrane fluidity and maintenance of membrane microarchitecture, directly impacting on GPCR stability, dynamics, and function. Cholesterol extraction from pancreatic beta cells has previously been shown to disrupt the internalisation, clustering, and cAMP responses of the glucagon-like peptide-1 receptor (GLP-1R), a class B1 GPCR with key roles in the control of blood glucose levels via the potentiation of insulin secretion in beta cells and weight reduction via the modulation of brain appetite control centres. Here, we unveil the detrimental effect of a high cholesterol diet on GLP-1R-dependent glucoregulation in vivo, and the improvement in GLP-1R function that a reduction in cholesterol synthesis using simvastatin exerts in pancreatic islets. We next identify and map sites of cholesterol high occupancy and residence time on active vs inactive GLP-1Rs using coarse-grained molecular dynamics (cgMD) simulations, followed by a screen of key residues selected from these sites and detailed analyses of the effects of mutating one of these, Val229, to alanine on GLP-1R-cholesterol interactions, plasma membrane behaviours, clustering, trafficking and signalling in INS-1 832/3 rat pancreatic beta cells and primary mouse islets, unveiling an improved insulin secretion profile for the V229A mutant receptor. This study (1) highlights the role of cholesterol in regulating GLP-1R responses in vivo; (2) provides a detailed map of GLP-1R - cholesterol binding sites in model membranes; (3) validates their functional relevance in beta cells; and (4) highlights their potential as locations for the rational design of novel allosteric modulators with the capacity to fine-tune GLP-1R responses.

    1. Cell Biology
    2. Genetics and Genomics
    Keva Li, Nicholas Tolman ... UK Biobank Eye and Vision Consortium
    Research Article

    A glaucoma polygenic risk score (PRS) can effectively identify disease risk, but some individuals with high PRS do not develop glaucoma. Factors contributing to this resilience remain unclear. Using 4,658 glaucoma cases and 113,040 controls in a cross-sectional study of the UK Biobank, we investigated whether plasma metabolites enhanced glaucoma prediction and if a metabolomic signature of resilience in high-genetic-risk individuals existed. Logistic regression models incorporating 168 NMR-based metabolites into PRS-based glaucoma assessments were developed, with multiple comparison corrections applied. While metabolites weakly predicted glaucoma (Area Under the Curve = 0.579), they offered marginal prediction improvement in PRS-only-based models (p=0.004). We identified a metabolomic signature associated with resilience in the top glaucoma PRS decile, with elevated glycolysis-related metabolites—lactate (p=8.8E-12), pyruvate (p=1.9E-10), and citrate (p=0.02)—linked to reduced glaucoma prevalence. These metabolites combined significantly modified the PRS-glaucoma relationship (Pinteraction = 0.011). Higher total resilience metabolite levels within the highest PRS quartile corresponded to lower glaucoma prevalence (Odds Ratiohighest vs. lowest total resilience metabolite quartile=0.71, 95% Confidence Interval = 0.64–0.80). As pyruvate is a foundational metabolite linking glycolysis to tricarboxylic acid cycle metabolism and ATP generation, we pursued experimental validation for this putative resilience biomarker in a human-relevant Mus musculus glaucoma model. Dietary pyruvate mitigated elevated intraocular pressure (p=0.002) and optic nerve damage (p<0.0003) in Lmx1bV265D mice. These findings highlight the protective role of pyruvate-related metabolism against glaucoma and suggest potential avenues for therapeutic intervention.