APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition

  1. Sandra R Richardson
  2. Iñigo Narvaiza
  3. Randy A Planegger
  4. Matthew D Weitzman
  5. John V Moran  Is a corresponding author
  1. University of Michigan Medical School, United States
  2. The Salk Institute for Biological Studies, United States
  3. University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, United States

Abstract

Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.

Article and author information

Author details

  1. Sandra R Richardson

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. Iñigo Narvaiza

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Randy A Planegger

    University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  4. Matthew D Weitzman

    University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. John V Moran

    University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    moranj@umich.edu
    Competing interests
    John V Moran, is an inventor on patent 6,150,160. Kazazian HH, Boeke JD, Moran JV, Dombroski BA: Compositions and methods of use of mammalian retrotransposons.

Copyright

© 2014, Richardson et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,889
    views
  • 260
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra R Richardson
  2. Iñigo Narvaiza
  3. Randy A Planegger
  4. Matthew D Weitzman
  5. John V Moran
(2014)
APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition
eLife 3:e02008.
https://doi.org/10.7554/eLife.02008

Share this article

https://doi.org/10.7554/eLife.02008

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Dániel Molnár, Éva Viola Surányi ... Judit Toth
    Research Article

    The sustained success of Mycobacterium tuberculosis as a pathogen arises from its ability to persist within macrophages for extended periods and its limited responsiveness to antibiotics. Furthermore, the high incidence of resistance to the few available antituberculosis drugs is a significant concern, especially since the driving forces of the emergence of drug resistance are not clear. Drug-resistant strains of Mycobacterium tuberculosis can emerge through de novo mutations, however, mycobacterial mutation rates are low. To unravel the effects of antibiotic pressure on genome stability, we determined the genetic variability, phenotypic tolerance, DNA repair system activation, and dNTP pool upon treatment with current antibiotics using Mycobacterium smegmatis. Whole-genome sequencing revealed no significant increase in mutation rates after prolonged exposure to first-line antibiotics. However, the phenotypic fluctuation assay indicated rapid adaptation to antibiotics mediated by non-genetic factors. The upregulation of DNA repair genes, measured using qPCR, suggests that genomic integrity may be maintained through the activation of specific DNA repair pathways. Our results, indicating that antibiotic exposure does not result in de novo adaptive mutagenesis under laboratory conditions, do not lend support to the model suggesting antibiotic resistance development through drug pressure-induced microevolution.