1. Stem Cells and Regenerative Medicine
  2. Chromosomes and Gene Expression
Download icon

MOF-associated complexes have overlapping and unique roles in regulating pluripotency in embryonic stem cells and during differentiation

  1. Sarina Ravens
  2. Marjorie Fournier
  3. Tao Ye
  4. Matthieu Stierle
  5. Doulaye Dembele
  6. Virginie Chavant
  7. Làszlò Tora  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, France
Research Article
  • Cited 22
  • Views 2,143
  • Annotations
Cite this article as: eLife 2014;3:e02104 doi: 10.7554/eLife.02104

Abstract

The histone acetyltransferase (HAT) Mof is essential for mouse embryonic stem cells (mESC) pluripotency and early development. Mof is the enzymatic subunit of two different HAT complexes, MSL and NSL. The individual contribution of MSL and NSL to transcription regulation in mESCs is not well understood. Our genome-wide analysis show that i) MSL and NSL bind to specific and common sets of expressed genes, ii) NSL binds exclusively at promoters, iii) while MSL binds in gene bodies. Nsl1 regulates proliferation and cellular homeostasis of mESCs. MSL is the main HAT acetylating H4K16 in mESCs, is enriched at many mESC-specific and bivalent genes. MSL is important to keep a subset of bivalent genes silent in mESCs, while developmental genes require MSL for expression during differentiation. Thus, NSL and MSL HAT complexes differentially regulate specific sets of expressed genes in mESCs and during differentiation.

Article and author information

Author details

  1. Sarina Ravens

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marjorie Fournier

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tao Ye

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Matthieu Stierle

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Doulaye Dembele

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Virginie Chavant

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Làszlò Tora

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104 - Inserm U 964, Université de Strasbourg, Illkirch, France
    For correspondence
    laszlo@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Danny Reinberg, Howard Hughes Medical Institute, New York University School of Medicine, United States

Publication history

  1. Received: December 17, 2013
  2. Accepted: June 3, 2014
  3. Accepted Manuscript published: June 4, 2014 (version 1)
  4. Version of Record published: June 17, 2014 (version 2)

Copyright

© 2014, Ravens et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,143
    Page views
  • 263
    Downloads
  • 22
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Laura Alonso-Herranz et al.
    Research Article

    Macrophages (Mφs) produce factors that participate in cardiac repair and remodeling after myocardial infarction (MI); however, how these factors crosstalk with other cell types mediating repair is not fully understood. Here, we demonstrated that cardiac Mφs increased expression of Mmp14 (MT1-MMP) 7 days post-MI. We selectively inactivated the Mmp14 gene in Mφs using a genetic strategy (Mmp14f/f:Lyz2-Cre). This conditional KO (MAC-Mmp14 KO) resulted in attenuated post-MI cardiac dysfunction, reduced fibrosis, and preserved cardiac capillary network. Mechanistically, we showed that MT1-MMP activates latent TGFβ1 in Mφs, leading to paracrine SMAD2-mediated signaling in endothelial cells (ECs) and endothelial-to-mesenchymal transition (EndMT). Post-MI MAC-Mmp14 KO hearts contained fewer cells undergoing EndMT than their wild-type counterparts, and Mmp14-deficient Mφs showed a reduced ability to induce EndMT in co-cultures with ECs. Our results indicate the contribution of EndMT to cardiac fibrosis and adverse remodeling post-MI and identify Mφ MT1-MMP as a key regulator of this process.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Arun Sharma et al.
    Research Article

    Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. Loss of function variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4, FOXA1/2 and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants.