Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/Neuregulin 1 signalling

Abstract

Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia.

Article and author information

Author details

  1. Pietro Fazzari

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  2. An Snellinx

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  3. Victor Sabanov

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Tariq Ahmed

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  5. Lutgarde Serneels

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  6. Annette Gartner

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  7. S. Ali M Shariati

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  8. Detlef Balschun

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  9. Bart De Strooper

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    For correspondence
    bart.destrooper@cme.vib-kuleuven.be
    Competing interests
    Bart De Strooper, Reviewing editor, eLife, and it might be perceived as a potential conflict of interest that I (BDS) am consultant for Janssen Pharmaceutica, Remynd NV and Envivo Pharmaceutics.

Reviewing Editor

  1. Eunjoon Kim, Korea Advanced Institute of Science and Technology, South Korea

Ethics

Animal experimentation: All the experiments involving animals in this study were approved and performed in strict accordance with the recommendations of the Ethical Committee of Katholic Univesitet Leuven (Approval Nr. p047/2012). Every effort was taken to minimize suffering of mice according to the guidelines Ethical Committee.

Version history

  1. Received: January 2, 2014
  2. Accepted: May 29, 2014
  3. Accepted Manuscript published: June 2, 2014 (version 1)
  4. Accepted Manuscript updated: June 5, 2014 (version 2)
  5. Version of Record published: July 1, 2014 (version 3)

Copyright

© 2014, Fazzari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,971
    views
  • 203
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pietro Fazzari
  2. An Snellinx
  3. Victor Sabanov
  4. Tariq Ahmed
  5. Lutgarde Serneels
  6. Annette Gartner
  7. S. Ali M Shariati
  8. Detlef Balschun
  9. Bart De Strooper
(2014)
Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/Neuregulin 1 signalling
eLife 3:e02196.
https://doi.org/10.7554/eLife.02196

Share this article

https://doi.org/10.7554/eLife.02196

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.