Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/Neuregulin 1 signalling

Abstract

Neuregulin 1 (NRG1) and the γ-secretase subunit APH1B have been previously implicated as genetic risk factors for schizophrenia and schizophrenia relevant deficits have been observed in rodent models with loss of function mutations in either gene. Here we show that the Aph1b-γ-secretase is selectively involved in Nrg1 intracellular signalling. We found that Aph1b-deficient mice display a decrease in excitatory synaptic markers. Electrophysiological recordings show that Aph1b is required for excitatory synaptic transmission and plasticity. Furthermore, gain and loss of function and genetic rescue experiments indicate that Nrg1 intracellular signalling promotes dendritic spine formation downstream of Aph1b-γ-secretase in vitro and in vivo. In conclusion, our study sheds light on the physiological role of Aph1b-γ-secretase in brain and provides a new mechanistic perspective on the relevance of NRG1 processing in schizophrenia.

Article and author information

Author details

  1. Pietro Fazzari

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  2. An Snellinx

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  3. Victor Sabanov

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  4. Tariq Ahmed

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  5. Lutgarde Serneels

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  6. Annette Gartner

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  7. S. Ali M Shariati

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  8. Detlef Balschun

    KU Leuven, Leuven, Belgium
    Competing interests
    No competing interests declared.
  9. Bart De Strooper

    VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
    For correspondence
    bart.destrooper@cme.vib-kuleuven.be
    Competing interests
    Bart De Strooper, Reviewing editor, eLife, and it might be perceived as a potential conflict of interest that I (BDS) am consultant for Janssen Pharmaceutica, Remynd NV and Envivo Pharmaceutics.

Ethics

Animal experimentation: All the experiments involving animals in this study were approved and performed in strict accordance with the recommendations of the Ethical Committee of Katholic Univesitet Leuven (Approval Nr. p047/2012). Every effort was taken to minimize suffering of mice according to the guidelines Ethical Committee.

Copyright

© 2014, Fazzari et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,012
    views
  • 210
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pietro Fazzari
  2. An Snellinx
  3. Victor Sabanov
  4. Tariq Ahmed
  5. Lutgarde Serneels
  6. Annette Gartner
  7. S. Ali M Shariati
  8. Detlef Balschun
  9. Bart De Strooper
(2014)
Cell autonomous regulation of hippocampal circuitry via Aph1b-γ-secretase/Neuregulin 1 signalling
eLife 3:e02196.
https://doi.org/10.7554/eLife.02196

Share this article

https://doi.org/10.7554/eLife.02196

Further reading

    1. Neuroscience
    Poortata Lalwani, Thad Polk, Douglas D Garrett
    Research Article

    Moment-to-moment neural variability has been shown to scale positively with the complexity of stimulus input. However, the mechanisms underlying the ability to align variability to input complexity are unknown. Using a combination of behavioral methods, computational modeling, fMRI, MR spectroscopy, and pharmacological intervention, we investigated the role of aging and GABA in neural variability during visual processing. We replicated previous findings that participants expressed higher variability when viewing more complex visual stimuli. Additionally, we found that such variability modulation was associated with higher baseline visual GABA levels and was reduced in older adults. When pharmacologically increasing GABA activity, we found that participants with lower baseline GABA levels showed a drug-related increase in variability modulation while participants with higher baseline GABA showed no change or even a reduction, consistent with an inverted-U account. Finally, higher baseline GABA and variability modulation were jointly associated with better visual-discrimination performance. These results suggest that GABA plays an important role in how humans utilize neural variability to adapt to the complexity of the visual world.

    1. Neuroscience
    Kayson Fakhar, Fatemeh Hadaeghi ... Claus C Hilgetag
    Research Article

    Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain’s most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.