Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1

  1. Xiaofei Jia
  2. Erin Weber
  3. Andrey Tokarev
  4. Mary Lewinski
  5. Maryan Rizk
  6. Marissa Suarez
  7. John Guatelli
  8. Yong Xiong  Is a corresponding author
  1. Yale University, United States
  2. University of California San Diego, United States

Abstract

BST2/tetherin, an antiviral restriction factor, inhibits the release of enveloped viruses from the cell surface. Human immunodeficiency virus-1 (HIV-1) antagonizes BST2 through viral protein u (Vpu), which downregulates BST2 from the cell surface. We report the crystal structure of a protein complex containing Vpu and BST2 cytoplasmic domains and the core of the clathrin adaptor protein complex 1 (AP1). This, together with our biochemical and functional validations, reveals how Vpu hijacks the AP1-dependent membrane trafficking pathways to mistraffick BST2. Vpu mimics a canonical acidic dileucine-sorting motif to bind AP1 in the cytosol, while simultaneously interacting with BST2 in the membrane. These interactions enable Vpu to build on an intrinsic interaction between BST2 and AP1, presumably causing the observed retention of BST2 in juxtanuclear endosomes and stimulating its degradation in lysosomes. The ability of Vpu to hijack AP-dependent trafficking pathways suggests a potential common theme for Vpu-mediated downregulation of host proteins.

Article and author information

Author details

  1. Xiaofei Jia

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Erin Weber

    Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrey Tokarev

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mary Lewinski

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maryan Rizk

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marissa Suarez

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. John Guatelli

    University of California San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Yong Xiong

    Yale University, New Haven, United States
    For correspondence
    yong.xiong@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Wesley Sundquist, University of Utah, United States

Version history

  1. Received: January 21, 2014
  2. Accepted: April 6, 2014
  3. Accepted Manuscript published: April 29, 2014 (version 1)
  4. Version of Record published: May 13, 2014 (version 2)

Copyright

© 2014, Jia et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,191
    views
  • 200
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaofei Jia
  2. Erin Weber
  3. Andrey Tokarev
  4. Mary Lewinski
  5. Maryan Rizk
  6. Marissa Suarez
  7. John Guatelli
  8. Yong Xiong
(2014)
Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1
eLife 3:e02362.
https://doi.org/10.7554/eLife.02362

Share this article

https://doi.org/10.7554/eLife.02362

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.