A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
Abstract
Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.
Article and author information
Author details
Copyright
© 2014, Wybouw et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,095
- views
-
- 640
- downloads
-
- 139
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 139
- citations for umbrella DOI https://doi.org/10.7554/eLife.02365