A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen  Is a corresponding author
  1. Ghent University, Belgium
  2. University of Western Ontario, Canada
  3. Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, France
  4. University of Amsterdam, Netherlands

Abstract

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.

Article and author information

Author details

  1. Nicky Wybouw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Wannes Dermauw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Tirry

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Stevens

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Miodrag Grbić

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. René Feyereisen

    Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Van Leeuwen

    University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    thomas.vanleeuwen@ugent.be
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wybouw et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,078
    views
  • 617
    downloads
  • 131
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen
(2014)
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
eLife 3:e02365.
https://doi.org/10.7554/eLife.02365

Share this article

https://doi.org/10.7554/eLife.02365

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.