A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen  Is a corresponding author
  1. Ghent University, Belgium
  2. University of Western Ontario, Canada
  3. Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, France
  4. University of Amsterdam, Netherlands

Abstract

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.

Article and author information

Author details

  1. Nicky Wybouw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Wannes Dermauw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Tirry

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Stevens

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Miodrag Grbić

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. René Feyereisen

    Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Van Leeuwen

    University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    thomas.vanleeuwen@ugent.be
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Version history

  1. Received: January 22, 2014
  2. Accepted: April 1, 2014
  3. Accepted Manuscript published: April 24, 2014 (version 1)
  4. Version of Record published: May 6, 2014 (version 2)

Copyright

© 2014, Wybouw et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,044
    views
  • 594
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen
(2014)
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
eLife 3:e02365.
https://doi.org/10.7554/eLife.02365

Share this article

https://doi.org/10.7554/eLife.02365

Further reading

    1. Genetics and Genomics
    Samuel Pattillo Smith, Gregory Darnell ... Lorin Crawford
    Research Article

    LD score regression (LDSC) is a method to estimate narrow-sense heritability from genome-wide association study (GWAS) summary statistics alone, making it a fast and popular approach. In this work, we present interaction-LD score (i-LDSC) regression: an extension of the original LDSC framework that accounts for interactions between genetic variants. By studying a wide range of generative models in simulations, and by re-analyzing 25 well-studied quantitative phenotypes from 349,468 individuals in the UK Biobank and up to 159,095 individuals in BioBank Japan, we show that the inclusion of a cis-interaction score (i.e. interactions between a focal variant and proximal variants) recovers genetic variance that is not captured by LDSC. For each of the 25 traits analyzed in the UK Biobank and BioBank Japan, i-LDSC detects additional variation contributed by genetic interactions. The i-LDSC software and its application to these biobanks represent a step towards resolving further genetic contributions of sources of non-additive genetic effects to complex trait variation.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Yannick Schäfer, Katja Palitzsch ... Jaanus Suurväli
    Research Article Updated

    Copy number variation in large gene families is well characterized for plant resistance genes, but similar studies are rare in animals. The zebrafish (Danio rerio) has hundreds of NLR immune genes, making this species ideal for studying this phenomenon. By sequencing 93 zebrafish from multiple wild and laboratory populations, we identified a total of 1513 NLRs, many more than the previously known 400. Approximately half of those are present in all wild populations, but only 4% were found in 80% or more of the individual fish. Wild fish have up to two times as many NLRs per individual and up to four times as many NLRs per population than laboratory strains. In contrast to the massive variability of gene copies, nucleotide diversity in zebrafish NLR genes is very low: around half of the copies are monomorphic and the remaining ones have very few polymorphisms, likely a signature of purifying selection.