A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen  Is a corresponding author
  1. Ghent University, Belgium
  2. University of Western Ontario, Canada
  3. Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, France
  4. University of Amsterdam, Netherlands

Abstract

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.

Article and author information

Author details

  1. Nicky Wybouw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Wannes Dermauw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Tirry

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Stevens

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Miodrag Grbić

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. René Feyereisen

    Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Van Leeuwen

    University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    thomas.vanleeuwen@ugent.be
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wybouw et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,069
    views
  • 609
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen
(2014)
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
eLife 3:e02365.
https://doi.org/10.7554/eLife.02365

Share this article

https://doi.org/10.7554/eLife.02365

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Philipp H Schiffer, Paschalis Natsidis ... Maximilian J Telford
    Research Article Updated

    The evolutionary origins of Bilateria remain enigmatic. One of the more enduring proposals highlights similarities between a cnidarian-like planula larva and simple acoel-like flatworms. This idea is based in part on the view of the Xenacoelomorpha as an outgroup to all other bilaterians which are themselves designated the Nephrozoa (protostomes and deuterostomes). Genome data can provide important comparative data and help understand the evolution and biology of enigmatic species better. Here, we assemble and analyze the genome of the simple, marine xenacoelomorph Xenoturbella bocki, a key species for our understanding of early bilaterian evolution. Our highly contiguous genome assembly of X. bocki has a size of ~111 Mbp in 18 chromosome-like scaffolds, with repeat content and intron, exon, and intergenic space comparable to other bilaterian invertebrates. We find X. bocki to have a similar number of genes to other bilaterians and to have retained ancestral metazoan synteny. Key bilaterian signaling pathways are also largely complete and most bilaterian miRNAs are present. Overall, we conclude that X. bocki has a complex genome typical of bilaterians, which does not reflect the apparent simplicity of its body plan that has been so important to proposals that the Xenacoelomorpha are the simple sister group of the rest of the Bilateria.

    1. Evolutionary Biology
    2. Genetics and Genomics
    Akiko Satake, Ryosuke Imai ... Masahiro Kasahara
    Research Article

    The rates of appearance of new mutations play a central role in evolution. However, mutational processes in natural environments and their relationship with growth rates are largely unknown, particular in tropical ecosystems with high biodiversity. Here, we examined the somatic mutation landscapes of two tropical trees, Shorea laevis (slow-growing) and S. leprosula (fast-growing), in central Borneo, Indonesia. Using newly constructed genomes, we identified a greater number of somatic mutations in tropical trees than in temperate trees. In both species, we observed a linear increase in the number of somatic mutations with physical distance between branches. However, we found that the rate of somatic mutation accumulation per meter of growth was 3.7-fold higher in S. laevis than in S. leprosula. This difference in the somatic mutation rate was scaled with the slower growth rate of S. laevis compared to S. leprosula, resulting in a constant somatic mutation rate per year between the two species. We also found that somatic mutations are neutral within an individual, but those mutations transmitted to the next generation are subject to purifying selection. These findings suggest that somatic mutations accumulate with absolute time and older trees have a greater contribution towards generating genetic variation.