A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen  Is a corresponding author
  1. Ghent University, Belgium
  2. University of Western Ontario, Canada
  3. Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, France
  4. University of Amsterdam, Netherlands

Abstract

Cyanogenic glucosides are among the most widespread defense chemicals of plants. Upon plant tissue disruption, these glucosides are hydrolyzed to a reactive hydroxynitrile that releases toxic hydrogen cyanide (HCN). Yet many mite and lepidopteran species can thrive on plants defended by cyanogenic glucosides. The nature of the enzyme known to detoxify HCN to β-cyanoalanine in arthropods has remained enigmatic. Here we identify this enzyme by transcriptome analysis and functional expression. Phylogenetic analysis showed that the gene is a member of the cysteine synthase family horizontally transferred from bacteria to phytophagous mites and Lepidoptera. The recombinant mite enzyme had both β-cyanoalanine synthase and cysteine synthase activity but enzyme kinetics showed that cyanide detoxification activity was strongly favored. Our results therefore suggest that an ancient horizontal transfer of a gene originally involved in sulfur amino acid biosynthesis in bacteria was co-opted by herbivorous arthropods to detoxify plant produced cyanide.

Article and author information

Author details

  1. Nicky Wybouw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Wannes Dermauw

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Luc Tirry

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Stevens

    Ghent University, Ghent, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Miodrag Grbić

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. René Feyereisen

    Centre National de la Recherche Scientifique and Université de Nice Sophia Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Van Leeuwen

    University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    thomas.vanleeuwen@ugent.be
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joerg Bohlmann, University of British Columbia, Canada

Publication history

  1. Received: January 22, 2014
  2. Accepted: April 1, 2014
  3. Accepted Manuscript published: April 24, 2014 (version 1)
  4. Version of Record published: May 6, 2014 (version 2)

Copyright

© 2014, Wybouw et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,887
    Page views
  • 513
    Downloads
  • 95
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicky Wybouw
  2. Wannes Dermauw
  3. Luc Tirry
  4. Christian Stevens
  5. Miodrag Grbić
  6. René Feyereisen
  7. Thomas Van Leeuwen
(2014)
A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning
eLife 3:e02365.
https://doi.org/10.7554/eLife.02365

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Heyun Guo et al.
    Research Article

    In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants as well as in the wild type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Liselot Dewachter et al.
    Research Article

    Antibiotic resistance in the important opportunistic human pathogen Streptococcus pneumoniae is on the rise. This is particularly problematic in the case of the β-lactam antibiotic amoxicillin, which is the first-line therapy. It is therefore crucial to uncover targets that would kill or resensitize amoxicillin-resistant pneumococci. To do so, we developed a genome-wide, single-cell based, gene silencing screen using CRISPR interference called sCRilecs-seq (subsets of CRISPR interference libraries extracted by fluorescence activated cell sorting coupled to next generation sequencing). Since amoxicillin affects growth and division, sCRilecs-seq was used to identify targets that are responsible for maintaining proper cell size. Our screen revealed that downregulation of the mevalonate pathway leads to extensive cell elongation. Further investigation into this phenotype indicates that it is caused by a reduced availability of cell wall precursors at the site of cell wall synthesis due to a limitation in the production of undecaprenyl phosphate (Und-P), the lipid carrier that is responsible for transporting these precursors across the cell membrane. The data suggest that, whereas peptidoglycan synthesis continues even with reduced Und-P levels, cell constriction is specifically halted. We successfully exploited this knowledge to create a combination treatment strategy where the FDA-approved drug clomiphene, an inhibitor of Und-P synthesis, is paired up with amoxicillin. Our results show that clomiphene potentiates the antimicrobial activity of amoxicillin and that combination therapy resensitizes amoxicillin-resistant S. pneumoniae. These findings could provide a starting point to develop a solution for the increasing amount of hard-to-treat amoxicillin-resistant pneumococcal infections.