1. Cell Biology
  2. Developmental Biology
Download icon

Thrombospondin-4 controls matrix assembly during development and Repair of Myotendinous Junctions

  1. Arul Subramanian
  2. Thomas F Schilling  Is a corresponding author
  1. University of California, Irvine, United States
Research Article
  • Cited 70
  • Views 2,891
  • Annotations
Cite this article as: eLife 2014;3:e02372 doi: 10.7554/eLife.02372

Abstract

Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes . We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair.

Article and author information

Author details

  1. Arul Subramanian

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  2. Thomas F Schilling

    University of California, Irvine, Irvine, United States
    For correspondence
    tschilli@uci.edu
    Competing interests
    Thomas F Schilling, TFS has filed a provisional patent Thrombospondin proteins and methods of using for treating tendons and ligaments" with US application serial no. 61/835.

Ethics

Animal experimentation: This study was performed in accordance with rules and protocols approved by University of California, Irvine- Institutional Animal Care and Use Committee (UCI-IACUC)(Protocol # 2000-2149-4). Juveniles and adult fish were euthanized with Ethyl 3-aminobenzoate methanesulfonate (Tricaine). Embryos were anesthetized with Tricaine before stimulation assays.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Publication history

  1. Received: January 22, 2014
  2. Accepted: June 17, 2014
  3. Accepted Manuscript published: June 18, 2014 (version 1)
  4. Accepted Manuscript updated: June 19, 2014 (version 2)
  5. Version of Record published: July 15, 2014 (version 3)

Copyright

© 2014, Subramanian & Schilling

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,891
    Page views
  • 382
    Downloads
  • 70
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Yong Fu et al.
    Research Article

    Toxoplasma gondii has evolved different developmental stages for disseminating during acute infection (i.e. tachyzoites) and for establishing chronic infection (i.e. bradyzoites). Calcium ion (Ca2+) signaling tightly regulates the lytic cycle of tachyzoites by controlling microneme secretion and motility to drive egress and cell invasion. However, the roles of Ca2+ signaling pathways in bradyzoites remain largely unexplored. Here we show that Ca2+ responses are highly restricted in bradyzoites and that they fail to egress in response to agonists. Development of dual-reporter parasites revealed dampened Ca2+ responses and minimal microneme secretion by bradyzoites induced in vitro or harvested from infected mice and tested ex vivo. Ratiometric Ca2+ imaging demonstrated lower Ca2+ basal levels, reduced magnitude, and slower Ca2+ kinetics in bradyzoites compared with tachyzoites stimulated with agonists. Diminished responses in bradyzoites were associated with down-regulation of Ca2+-ATPases involved in intracellular Ca2+ storage in the endoplasmic reticulum (ER) and acidocalcisomes. Once liberated from cysts by trypsin digestion, bradyzoites incubated in glucose plus Ca2+ rapidly restored their intracellular Ca2+ and ATP stores leading to enhanced gliding. Collectively, our findings indicate that intracellular bradyzoites exhibit dampened Ca2+ signaling and lower energy levels that restrict egress, and yet upon release they rapidly respond to changes in the environment to regain motility.

    1. Cell Biology
    Michelina Kierzek et al.
    Tools and Resources

    Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically-encoded FRET biosensors. Moreover, FASTM is compatible with opto-chemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.