Thrombospondin-4 controls matrix assembly during development and Repair of Myotendinous Junctions

  1. Arul Subramanian
  2. Thomas F Schilling  Is a corresponding author
  1. University of California, Irvine, United States

Abstract

Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes . We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair.

Article and author information

Author details

  1. Arul Subramanian

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  2. Thomas F Schilling

    University of California, Irvine, Irvine, United States
    For correspondence
    tschilli@uci.edu
    Competing interests
    Thomas F Schilling, TFS has filed a provisional patent Thrombospondin proteins and methods of using for treating tendons and ligaments" with US application serial no. 61/835.

Ethics

Animal experimentation: This study was performed in accordance with rules and protocols approved by University of California, Irvine- Institutional Animal Care and Use Committee (UCI-IACUC)(Protocol # 2000-2149-4). Juveniles and adult fish were euthanized with Ethyl 3-aminobenzoate methanesulfonate (Tricaine). Embryos were anesthetized with Tricaine before stimulation assays.

Copyright

© 2014, Subramanian & Schilling

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,341
    views
  • 459
    downloads
  • 105
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arul Subramanian
  2. Thomas F Schilling
(2014)
Thrombospondin-4 controls matrix assembly during development and Repair of Myotendinous Junctions
eLife 3:e02372.
https://doi.org/10.7554/eLife.02372

Share this article

https://doi.org/10.7554/eLife.02372

Further reading

    1. Cell Biology
    2. Developmental Biology
    Yuhkoh Satouh, Takaki Tatebe ... Ken Sato
    Research Article

    Mouse oocytes undergo drastic changes in organellar composition and their activities during maturation from the germinal vesicle (GV) to metaphase II (MII) stage. After fertilization, the embryo degrades parts of the maternal components via lysosomal degradation systems, including autophagy and endocytosis, as zygotic gene expression begins during embryogenesis. Here, we demonstrate that endosomal-lysosomal organelles form large spherical assembly structures, termed endosomal-lysosomal organellar assemblies (ELYSAs), in mouse oocytes. ELYSAs are observed in GV oocytes, attaining sizes up to 7–8 μm in diameter in MII oocytes. ELYSAs comprise tubular-vesicular structures containing endosomes and lysosomes along with cytosolic components. Most ELYSAs are also positive for an autophagy regulator, LC3. These characteristics of ELYSA resemble those of ELVA (endolysosomal vesicular assemblies) identified independently. The signals of V1-subunit of vacuolar ATPase tends to be detected on the periphery of ELYSAs in MII oocytes. After fertilization, the localization of the V1-subunit on endosomes and lysosomes increase as ELYSAs gradually disassemble at the 2-cell stage, leading to further acidification of endosomal-lysosomal organelles. These findings suggest that the ELYSA/ELVA maintain endosomal-lysosomal activity in a static state in oocytes for timely activation during early development.

    1. Cell Biology
    Laura Childers, Jieun Park ... Michel Bagnat
    Research Article

    Dietary protein absorption in neonatal mammals and fishes relies on the function of a specialized and conserved population of highly absorptive lysosome-rich enterocytes (LREs). The gut microbiome has been shown to enhance absorption of nutrients, such as lipids, by intestinal epithelial cells. However, whether protein absorption is also affected by the gut microbiome is poorly understood. Here, we investigate connections between protein absorption and microbes in the zebrafish gut. Using live microscopy-based quantitative assays, we find that microbes slow the pace of protein uptake and degradation in LREs. While microbes do not affect the number of absorbing LRE cells, microbes lower the expression of endocytic and protein digestion machinery in LREs. Using transgene-assisted cell isolation and single cell RNA-sequencing, we characterize all intestinal cells that take up dietary protein. We find that microbes affect expression of bacteria-sensing and metabolic pathways in LREs, and that some secretory cell types also take up protein and share components of protein uptake and digestion machinery with LREs. Using custom-formulated diets, we investigated the influence of diet and LRE activity on the gut microbiome. Impaired protein uptake activity in LREs, along with a protein-deficient diet, alters the microbial community and leads to an increased abundance of bacterial genera that have the capacity to reduce protein uptake in LREs. Together, these results reveal that diet-dependent reciprocal interactions between LREs and the gut microbiome regulate protein absorption.