MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability

  1. Young Eun Choi
  2. Yunfeng Pan
  3. Eunmi Park
  4. Panagiotis Konstantinopoulos
  5. Subhajyoti De
  6. Alan D'Andrea
  7. Dipanjan Chowdhury  Is a corresponding author
  1. Dana-Farber Cancer Institute, Harvard Medical School, United States
  2. University of Colorado School of Medicine, United States

Abstract

Homologous recombination (HR) mediated repair of DNA double-strand break (DSB)s is restricted to the post-replicative phases of the cell cycle. Initiation of HR in the G1 phase blocks non-homologous end joining (NHEJ) impairing DSB repair. Completion of HR in G1 cells can lead to the loss-of-heterozygosity (LOH) which is potentially carcinogenic. We conducted a gain-of-function screen to identify miRNAs that regulate HR-mediated DSB repair, and of these miRNAs, miR-1255b, miR-148b*and miR-193b* specifically suppress the HR-pathway in the G1 phase. These miRNAs target the transcripts of HR factors, BRCA1, BRCA2 and RAD51 and inhibiting miR-1255b, miR-148b*and miR-193b* increases expression of BRCA1/BRCA2/RAD51 specifically in the G1-phase leading to impaired DSB repair. Depletion of CtIP, a BRCA1-associated DNA end resection protein, rescues this phenotype. Furthermore, deletion of miR-1255b, miR-148b*and miR-193b* in independent cohorts of ovarian tumors correlates with significant increase in LOH events/ chromosomal aberrations and BRCA1 expression.

Article and author information

Author details

  1. Young Eun Choi

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yunfeng Pan

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Eunmi Park

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Panagiotis Konstantinopoulos

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Subhajyoti De

    University of Colorado School of Medicine, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alan D'Andrea

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Dipanjan Chowdhury

    Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
    For correspondence
    dipanjan_chowdhury@dfci.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Timothy Nilsen, Case Western Reserve University, United States

Ethics

Human subjects: The clinical data from patients was obtained via published sources which include the Cancer Genome Atlas

Version history

  1. Received: February 2, 2014
  2. Accepted: April 29, 2014
  3. Accepted Manuscript published: April 30, 2014 (version 1)
  4. Version of Record published: May 27, 2014 (version 2)

Copyright

© 2014, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,708
    views
  • 340
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Young Eun Choi
  2. Yunfeng Pan
  3. Eunmi Park
  4. Panagiotis Konstantinopoulos
  5. Subhajyoti De
  6. Alan D'Andrea
  7. Dipanjan Chowdhury
(2014)
MicroRNAs down-regulate homologous recombination in the G1 phase of cycling cells to maintain genomic stability
eLife 3:e02445.
https://doi.org/10.7554/eLife.02445

Share this article

https://doi.org/10.7554/eLife.02445

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.