1. Cell Biology
Download icon

Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis

  1. Scott J Dixon
  2. Darpan N Patel
  3. Matthew Welsch
  4. Rachid Skouta
  5. Eric D Lee
  6. Miki Hayano
  7. Ajit G Thomas
  8. Caroline E Gleason
  9. Nicholas Tatonetti
  10. Barbara S Slusher
  11. Brent R Stockwell  Is a corresponding author
  1. Columbia University, United States
  2. Johns Hopkins Medicine Brain Science Institute, United States
Research Article
  • Cited 509
  • Views 13,226
  • Annotations
Cite this article as: eLife 2014;3:e02523 doi: 10.7554/eLife.02523

Abstract

Exchange of extracellular cystine for intracellular glutamate by the antiporter system xc- is implicated in numerous pathologies. Pharmacological agents that inhibit system xc- activity have long been sought, but have remained elusive. Here, we report that the small molecule erastin is a potent, selective inhibitor of system xc-. RNA sequencing revealed that inhibition of cystine-glutamate exchange leads to activation of an ER stress response and upregulation of CHAC1, providing a pharmacodynamic marker for system xc- inhibition. We also found that the clinically approved anti-cancer drug sorafenib, but not other kinase inhibitors, inhibits system xc- function and can trigger ER stress and ferroptosis. In an analysis of hospital records and adverse event reports, we found that patients treated with sorafenib exhibited unique metabolic and phenotypic alterations compared to patients treated with other kinase-inhibiting drugs. Finally, using a genetic approach, we identified new genes dramatically upregulated in cells resistant to ferroptosis.

Article and author information

Author details

  1. Scott J Dixon

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Darpan N Patel

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Welsch

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rachid Skouta

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric D Lee

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Miki Hayano

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Ajit G Thomas

    Johns Hopkins Medicine Brain Science Institute, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Caroline E Gleason

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas Tatonetti

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Barbara S Slusher

    Johns Hopkins Medicine Brain Science Institute, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Brent R Stockwell

    Columbia University, New York, United States
    For correspondence
    bstockwell@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: The data analysis described in this manuscript was covered under the Columbia Institutional Review Board (IRB) protocol number AAAL0601 and performed according to NIH and Columbia University guidelines.

Reviewing Editor

  1. Wilfred van der Donk, University of Illinois-Urbana Champaign, United States

Publication history

  1. Received: February 12, 2014
  2. Accepted: May 17, 2014
  3. Accepted Manuscript published: May 20, 2014 (version 1)
  4. Version of Record published: June 17, 2014 (version 2)

Copyright

© 2014, Dixon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,226
    Page views
  • 2,872
    Downloads
  • 509
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Zdravka Daneva et al.
    Research Article Updated

    Pannexin 1 (Panx1), an ATP-efflux pathway, has been linked with inflammation in pulmonary capillaries. However, the physiological roles of endothelial Panx1 in the pulmonary vasculature are unknown. Endothelial transient receptor potential vanilloid 4 (TRPV4) channels lower pulmonary artery (PA) contractility and exogenous ATP activates endothelial TRPV4 channels. We hypothesized that endothelial Panx1–ATP–TRPV4 channel signaling promotes vasodilation and lowers pulmonary arterial pressure (PAP). Endothelial, but not smooth muscle, knockout of Panx1 increased PA contractility and raised PAP in mice. Flow/shear stress increased ATP efflux through endothelial Panx1 in PAs. Panx1-effluxed extracellular ATP signaled through purinergic P2Y2 receptor (P2Y2R) to activate protein kinase Cα (PKCα), which in turn activated endothelial TRPV4 channels. Finally, caveolin-1 provided a signaling scaffold for endothelial Panx1, P2Y2R, PKCα, and TRPV4 channels in PAs, promoting their spatial proximity and enabling signaling interactions. These results indicate that endothelial Panx1–P2Y2R–TRPV4 channel signaling, facilitated by caveolin-1, reduces PA contractility and lowers PAP in mice.

    1. Cell Biology
    Adria Razzauti, Patrick FM Laurent
    Research Article

    Cilia are sensory organelles protruding from cell surfaces. Release of Extracellular Vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male C. elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or Periciliary Membrane Compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs budding from the PCMC are concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of Intra-Flagellar Transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.