Temporal dynamics and developmental memory of 3D chromatin architecture at Hox gene loci

  1. Daan Noordermeer
  2. Marion Leleu
  3. Patrick Schorderet
  4. Elisabeth Joye
  5. Fabienne Chabaud
  6. Denis Duboule  Is a corresponding author
  1. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  2. Harvard University, United States
  3. University of Geneva, Switzerland
8 figures and 4 tables

Figures

Figure 1 with 7 supplements
Hox clusters in ES cells are organized as 3D compartments.

(A) Quantitative local 4C-seq signal for the Hoxd13 (top), Hoxd9 (middle) and Hoxd4 (bottom) viewpoints in ES cells. Below, the H3K27me3 and H3K4me3 ChIP-seq signals are aligned. The boundaries of …

https://doi.org/10.7554/eLife.02557.003
Figure 1—figure supplement 1
3D compartments in the HoxD cluster are less discrete in ES cells than in embryonic brain cells.

Comparison of quantitative local 4C-seq signals for replicate samples with the indicated viewpoints, either in ES (orange) or E10.5 forebrain (green) cells. All six comparisons between two …

https://doi.org/10.7554/eLife.02557.004
Figure 1—figure supplement 2
3D compartments in the HoxD and HoxB cluster are less discrete in ES cells than in embryonic brain cells.

Comparison of quantitative local 4C-seq signals for replicate samples with the indicated viewpoints, either in ES (orange) or E10.5 forebrain (green) cells. All six comparisons between two …

https://doi.org/10.7554/eLife.02557.005
Figure 1—figure supplement 3
3D compartments in the HoxB cluster are less discrete in ES cells than in embryonic brain cells.

Comparison of quantitative local 4C-seq signals for replicate samples with the indicated viewpoints, either in ES (orange) or E10.5 forebrain (green) cells. All six comparisons between two …

https://doi.org/10.7554/eLife.02557.006
Figure 1—figure supplement 4
3D compartments in the HoxC and HoxA cluster are less discrete in ES cells than in embryonic brain cells.

Comparison of quantitative local 4C-seq signals with the indicated viewpoints in ES (orange) or E10.5 forebrain (green) cells. Viewpoints are indicated with arrowheads and regions excluded around …

https://doi.org/10.7554/eLife.02557.007
Figure 1—figure supplement 5
Distribution of ratios inside and outside the inactive 3D Hox gene compartments in both ES and E10.5 forebrain cells.

The comparison between replicate samples one (as used in the main text) is indicated on the left, the comparison between combined replicate samples is indicated at the center left, the comparison …

https://doi.org/10.7554/eLife.02557.008
Figure 1—figure supplement 6
Different discretion of 3D compartments is not due to overall increased background signal.

(A) Distribution of 4C-seq signal on chromosome 2 from viewpoints in the HoxD cluster. On the right, a schematic representation of chromosome 2 is given, with color codes for the three categories …

https://doi.org/10.7554/eLife.02557.009
Figure 1—figure supplement 7
Increased Hox background transcription in ES cells.

(A) Expression levels of Hox genes and of four housekeeping genes in both ES and E10.5 forebrain cells, as determined by RNA-seq. The large majority of Hox genes show low level activity in ES cells, …

https://doi.org/10.7554/eLife.02557.010
Figure 2 with 2 supplements
Bi-modal 3D organization of Hox clusters upon sequential activation.

(A) Quantitative local 4C-seq signal for the Hoxd13 (left, centromeric side of HoxD cluster) and Hoxd4 (right, telomeric side of HoxD cluster) viewpoints, either in ES (orange), or E8.5 pre-somitic …

https://doi.org/10.7554/eLife.02557.012
Figure 2—figure supplement 1
Upon sequential activation, the HoxD cluster adopts a bi-modal 3D organization.

Quantitative local 4C-seq signals for the indicated Hoxd gene viewpoints. Profiles are displayed for ES (orange) and E8.5 pre-somitic mesoderm (cyan) cells. The viewpoints are indicated with …

https://doi.org/10.7554/eLife.02557.013
Figure 2—figure supplement 2
Upon sequential activation, other Hox clusters adopt a bi-modal 3D organization as well.

Quantitative local 4C-seq signals for the indicated Hox gene viewpoints in other Hox clusters. Profiles are displayed for ES (orange) and E8.5 pre-somitic mesoderm (cyan) cells. The viewpoints are …

https://doi.org/10.7554/eLife.02557.014
Activated Hoxd genes switch compartments.

Quantitative local 4C-seq signals for the Hoxd13, Hoxd11 Hoxd9 and Hoxd4 viewpoints in either E8.5 pre-somitic mesoderm (cyan), E9.5 tail bud (brown) or E10.5 tail bud (purple) cells. The colinear …

https://doi.org/10.7554/eLife.02557.015
The bimodal 3D organization of Hox cluster may help memorize states of colinear expression.

Quantitative local 4C-seq signals for the Hoxd13, Hoxd11 Hoxd9 and Hoxd4 viewpoints, in samples taken at various anterior to posterior positions along the developing body axis from E10.5 embryos. …

https://doi.org/10.7554/eLife.02557.016
Figure 5 with 2 supplements
Sequential Hoxd gene activation occurs without drastic remodeling of long-range interactions.

(A) Distribution of long-range contacts in both the centromeric and telomeric gene deserts surrounding the HoxD cluster. Smoothed 4C-seq signals (11 fragment window size) are shown for the Hoxd13

https://doi.org/10.7554/eLife.02557.017
Figure 5—figure supplement 1
Temporal colinearity occurs without dynamic long-range interactions.

(A) Distribution of long-range contacts in the centromeric and telomeric gene deserts surrounding the HoxD cluster. Smoothed 4C-seq signals (11 fragment window size) for the indicated HoxD

https://doi.org/10.7554/eLife.02557.018
Figure 5—figure supplement 2
Comparison between HiC and 4C-seq datasets obtained in ES cells.

(A) Virtual 4C carried out from HiC datasets, using bins covering the indicated Hoxd genes as viewpoints. Bins used as viewpoints are indicated in red. The interactions with bins covering the …

https://doi.org/10.7554/eLife.02557.019
Model of dynamic bi-modal 3D compartmentalization during temporal colinearity.

(A) Schematic organization of topological domains in ES cells (from Dixon et al. 2012) matching the centromeric and telomeric gene deserts, with an apparent boundary assigned near the Hoxd11 gene …

https://doi.org/10.7554/eLife.02557.020
Author response image 1
Author response image 2

Tables

Table 1

Spearman's rank correlation coefficient between pairs of 4C-seq and ChIP-seq samples

https://doi.org/10.7554/eLife.02557.011
ChIP-seq
4C-seqInputH3K27me3H3K4me3
Hoxd13 ES cells 1−0.140.520.24
Hoxd13 ES cells 2−0.070.400.22
Hoxd13 E8.5 PSM−0.030.580.13
Hoxd13 E10.5 Forebrain 1−0.120.670.26
Hoxd13 E10.5 Forebrain 2−0.090.690.25
Hoxd13 E10.5 Anterior trunk−0.070.800.30
Hoxd9 ES cells 1−0.080.630.28
Hoxd9 ES cells 2−0.130.590.26
Hoxd9 E8.5 PSM−0.050.310.29
Hoxd9 E10.5 Forebrain 1−0.080.660.26
Hoxd9 E10.5 Forebrain 2−0.120.610.28
Hoxd9 E10.5 Anterior trunk−0.150.670.47
Hoxd4 ES cells 10.010.480.11
Hoxd4 ES cells 2−0.070.500.29
Hoxd4 E8.5 PSM−0.040.040.38
Hoxd4 E10.5 Forebrain 1−0.050.590.24
Hoxd4 E10.5 Forebrain 2−0.040.580.27
Hoxd4 E10.5 Anterior trunk−0.070.160.59
Hoxc13 ES cells 1−0.030.390.20
Hoxc13 E8.5 PSM−0.030.55−0.03
Hoxc13 E10.5 Forebrain 1−0.070.570.18
Hoxc13 E10.5 Anterior trunk−0.050.820.00
Hoxb13 ES cells 1−0.050.120.02
Hoxb13 ES cells 2−0.08−0.010.15
Hoxb13 E8.5 PSM0.100.29−0.17
Hoxb13 E10.5 Forebrain 10.020.480.09
Hoxb13 E10.5 Forebrain 20.080.440.10
Hoxb13 E10.5 Anterior trunk−0.030.490.26
Hoxb9 ES cells 10.010.470.09
Hoxb9 ES cells 20.030.340.04
Hoxb9 E8.5 PSM−0.04−0.300.57
Hoxb9 E10.5 Forebrain 10.020.630.19
Hoxb9 E10.5 Forebrain 20.030.590.16
Hoxb9 E10.5 Anterior trunk0.06−0.010.69
Hoxa13 ES cells 10.100.520.14
Hoxa13 E8.5 PSM0.100.580.12
Hoxa13 E10.5 Forebrain 10.070.600.22
Hoxa13 E10.5 Anterior trunk0.060.730.20
  1. Spearman's rank correlation coefficient between pairs of 4C-seq and ChIP-seq samples in different samples (see section ‘Material and methods’ for methodology). For each 4C-seq sample, the highest correlating ChIP-seq sample is highlighted in bold.

Table 2

4C-seq Inverse primer sequences

https://doi.org/10.7554/eLife.02557.021
ViewpointInverse primerSequence
Hoxd13iHoxd13 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAAAAATCCTAGACCTGGTCATG
chr2:74504328-74504348
iHoxd13 reverse*CAAGCAGAAGACGGCATACGAGGCCGATGGTGCTGTATAGG
chr2:74505579-74505598
Hoxd11iHoxd11 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGCATACTTCCTCAGAAGAGGCA
chr2:74523621-74523643
iHoxd11 reverse*CAAGCAGAAGACGGCATACGACTAGGAAAATTCCTAATTTCAGG
chr2:74523881-74523903
Hoxd9iHoxd9 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTACGAACACCTCGTCGCCCT
chr2:74536168-74536185
iHoxd9 reverse*CAAGCAGAAGACGGCATACGACCCTCAGCTTGCAGCGAT
chr2:74536797-74536814
Hoxd4iHoxd4 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGGACAATAAAGCATCCATAGGCG
chr2:74561330-74561353
iHoxd4 reverse*CAAGCAGAAGACGGCATACGATCCAGTGGAATTGGGTGGGAT
chr2:74562171-74562191
Hoxc13iHoxc13 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAGATAATTTTCCTGAGACATTGTAAC
chr15:102756108-102756132
iHoxc13 reverse*CAAGCAGAAGACGGCATACGAGCTCAATGTTCCCTTCCCTAACG
chr15:102755251-102755273
Hoxb13iHoxb13 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGACTGTTCCTCGGGGCTAT
chr11:96057673-96057692
iHoxb13 reverse*CAAGCAGAAGACGGCATACGAATCTGGCGTTCAGAGAGGCT
chr11:96057448-96057467
Hoxb9iHoxb9 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAAGATTGAGGAGTCTGGCCACTT
chr11:96136070-96136091
iHoxb9 reverse*CAAGCAGAAGACGGCATACGATCATCAAACCAAGCAGGGCA
chr11:96136671-96136690
Hoxa13iHoxa13 forward*AATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTAACACTTGCACAACCAGAAATGC
chr6:52212211-52212232
iHoxa13 reverse*CAAGCAGAAGACGGCATACGAGGCGAGGCTCAGGCTTTTAT
chr6:52212476-52212495
CNS(39)iCNS(39) forwardAATGATACGGCGACCACCGAACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCAAGGAGAAAGGTGTTGGTC
chr2:74975258-74975279
iCNS(39) reverseCAAGCAGAAGACGGCATACGACAGGGCGTTGGGTCACTCT
chr2:74975670-74975687
  1. Location of primers according to NCBI37 (mm9).

  2. *

    Primers from Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D. 2011. The dynamic architecture of Hox gene clusters. Science 334:222–225.

  3. Primers from Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, Trono D, Spitz F, Duboule D. 2013. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340:1234167.

Table 3

RT-qPCR primer sequences

https://doi.org/10.7554/eLife.02557.022
FragmentPrimerSequence
mRNAmRNA Tubb2c forward*GCAGTGCGGCAACCAGAT chr2:25080064-25080081
Tubb2cmRNA Tubb2c reverse*AGTGGGATCAATGCCATGCT chr2:25079711-25079730
mRNAmRNA Tbp forward*TTGACCTAAAGACCATTGCACTTC chr17:15644342-15644365
TbpmRNA Tbp reverse*TTCTCATGATGACTGCAGCAAA chr17:15650497-15650518
mRNAmRNA Hoxd13 forward*GGTGTACTGTGCCAAGGATCAG chr2:74507077-74507098
Hoxd13mRNA Hoxd13 reverse*TTAAAGCCACATCCTGGAAAGG over intron boundry
mRNAmRNA Hoxd9 forward*GCAGCAACTTGACCCAAACA over intron boundry
Hoxd9mRNA Hoxd9 reverse*GGTGTAGGGACAGCGCTTTTT chr2:74537278-74537298
mRNAmRNA Hoxd4 forwardTCAAGCAGCCCGCTGTGGTC chr2:74565709-74565728
Hoxd4mRNA Hoxd4 reverseTCTGGTGTAGGCCGTCCGGG chr2:74566355-74566374
mRNAmRNA Hoxb13 forwardGTCCATTCTGGAAAGCAG chr11:96056334-96056351
Hoxb13mRNA Hoxb13 reverseAAACTTGTTGGCTGCATACT chr11:96057389-96057408
mRNAmRNA Hoxb9 forwardGGCAGGGAGGCTGTCCTGTCT chr11:96133282-96133302
Hoxb9mRNA Hoxb9 reverseGCCAGTTGGCAGAGGGGTTGG chr11:96135938-96135958
  1. Location of primers according to NCBI37 (mm9).

  2. *

    Primers from Montavon T, Le Garrec JF, Kerszberg M, Duboule D. 2008. Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 22:346–359.

Author response table 1
View pointES rep 1 vs FB rep 1ES rep 2 vs FB rep 1ES rep 1 vs FB rep 2ES all vs FB allES rep 1 vs ES rep 2FB rep 1 vs FB rep 2
Hoxd139.92E - 211.70E - 117.63E - 082.21E - 340.591.09E - 04
Hoxd93.02E - 020.360.912.61E - 030.900.27
Hoxd41.90E - 090.0150.0141.36E - 110.780.11
Hoxb131.37E - 047.65E - 030.0104.42E - 140.0370.51
Hoxb92.75E - 070.0190.0122.21E - 090.200.25
  1. p-values of difference in distribution between replicate samples. ES: ES cells, FB: forebrain.

Download links