The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6

  1. Yun Qing
  2. Feng Yin
  3. Wei Wang
  4. Yonggang Zheng
  5. Pengfei Guo
  6. Frederick Schozer
  7. Hua Deng
  8. Duojia Pan  Is a corresponding author
  1. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States
  2. Johns Hopkins University, United States

Abstract

The Hippo signaling pathway regulates tissue growth in Drosophila through the transcriptional coactivator Yorkie (Yki). How Yki activates target gene transcription is poorly understood. Here we identify Nuclear receptor coactivator 6 (Ncoa6), a subunit of the Trithorax-related (Trr) histone H3 lysine 4 (H3K4) methyltransferase complex, as a Yki-binding protein. Like Yki, Ncoa6 and Trr are functionally required for Hippo-mediated growth control and target gene expression. Strikingly, artificial tethering of Ncoa6 to Sd is sufficient to promote tissue growth and Yki target expression even in the absence of Yki, underscoring the importance of Yki-mediated recruitment of Ncoa6 in transcriptional activation. Consistent with the established role for the Trr complex in histone methylation, we show that Yki, Ncoa6 and Trr are required for normal H3K4 methylation at Hippo target genes. These findings shed light on Yki-mediated transcriptional regulation and uncover a potential link between chromatin modification and tissue growth.

Article and author information

Author details

  1. Yun Qing

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Feng Yin

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Wei Wang

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Yonggang Zheng

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Pengfei Guo

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Frederick Schozer

    Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Hua Deng

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Duojia Pan

    Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    djpan@jhmi.edu
    Competing interests
    Duojia Pan, Reviewing editor, eLife.

Reviewing Editor

  1. Janet Rossant, University of Toronto, Canada

Version history

  1. Received: February 17, 2014
  2. Accepted: July 11, 2014
  3. Accepted Manuscript published: July 15, 2014 (version 1)
  4. Version of Record published: August 1, 2014 (version 2)

Copyright

© 2014, Qing et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,007
    views
  • 354
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yun Qing
  2. Feng Yin
  3. Wei Wang
  4. Yonggang Zheng
  5. Pengfei Guo
  6. Frederick Schozer
  7. Hua Deng
  8. Duojia Pan
(2014)
The Hippo effector Yorkie activates transcription by interacting with a histone methyltransferase complex through Ncoa6
eLife 3:e02564.
https://doi.org/10.7554/eLife.02564

Share this article

https://doi.org/10.7554/eLife.02564

Further reading

    1. Cell Biology
    2. Developmental Biology
    Nicolas Loyer, Elizabeth KJ Hogg ... Jens Januschke
    Research Article Updated

    The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Mayank Verma, Yoko Asakura ... Atsushi Asakura
    Research Article Updated

    Endothelial and skeletal muscle lineages arise from common embryonic progenitors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by the expression of a subset of EC transcripts. We used several computational analyses including single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival during muscle regeneration, and highlights how the minor expression of select transcripts is sufficient for affecting cell behavior.