Abstract

Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task.

Article and author information

Author details

  1. Nadine Randel

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Albina Asadulina

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Luis A Bezares-Calderón

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Csaba Verasztó

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Elizabeth A Williams

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Markus Conzelmann

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Réza Shahidi

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Gáspár Jékely

    Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    gaspar.jekely@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study only used invertebrate animals.

Copyright

© 2014, Randel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,695
    views
  • 489
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nadine Randel
  2. Albina Asadulina
  3. Luis A Bezares-Calderón
  4. Csaba Verasztó
  5. Elizabeth A Williams
  6. Markus Conzelmann
  7. Réza Shahidi
  8. Gáspár Jékely
(2014)
Neuronal connectome of a sensory-motor circuit for visual navigation
eLife 3:e02730.
https://doi.org/10.7554/eLife.02730

Share this article

https://doi.org/10.7554/eLife.02730

Further reading

    1. Neuroscience
    Sara Jamali, Sophie Bagur ... Brice Bathellier
    Research Article

    The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.

    1. Neuroscience
    Emmanuel Ponsot
    Insight

    Damage to the synapses connecting hair cells to the auditory nerve leads to undetected hearing impairments.