Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

  1. Melina Zourelidou
  2. Birgit Absmanner
  3. Benjamin Weller
  4. Inês CR Barbosa
  5. Björn C Willige
  6. Astrid Fastner
  7. Verena Streit
  8. Sarah A Port
  9. Jean Colcombet
  10. Sergio de la Fuente van Bentem
  11. Heribert Hirt
  12. Bernhard Kuster
  13. Waltraud X Schulze
  14. Ulrich Z Hammes
  15. Claus Schwechheimer  Is a corresponding author
  1. Technische Universität München, Germany
  2. Universität Regensburg, Germany
  3. Salk Institute for Biological Studies, United States
  4. Göttingen University Medical Center, Germany
  5. Université Evry, France
  6. Syngenta Seeds B.V, Netherlands
  7. King Abdullah University of Science and Technology, Saudi Arabia
  8. Max-Planck-Institute of Molecular Plant Physiology, Germany

Abstract

The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the - in many cells - asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

Article and author information

Author details

  1. Melina Zourelidou

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Birgit Absmanner

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Weller

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Inês CR Barbosa

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Björn C Willige

    Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Astrid Fastner

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Verena Streit

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Sarah A Port

    Göttingen University Medical Center, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean Colcombet

    Université Evry, Evry, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergio de la Fuente van Bentem

    Syngenta Seeds B.V, Enkhuizen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Heribert Hirt

    King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
    Competing interests
    The authors declare that no competing interests exist.
  12. Bernhard Kuster

    Technische Universität München, Freising, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Waltraud X Schulze

    Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Ulrich Z Hammes

    Universität Regensburg, Regensburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Claus Schwechheimer

    Technische Universität München, Freising, Germany
    For correspondence
    claus.schwechheimer@wzw.tum.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations and guidelines based on the Tierschutzgesetz (TierSchG) of the Federal Republic of Germany.

Reviewing Editor

  1. Christian S Hardtke, University of Lausanne, Switzerland

Publication history

  1. Received: March 23, 2014
  2. Accepted: June 17, 2014
  3. Accepted Manuscript published: June 19, 2014 (version 1)
  4. Version of Record published: July 15, 2014 (version 2)

Copyright

© 2014, Zourelidou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,770
    Page views
  • 724
    Downloads
  • 150
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Melina Zourelidou
  2. Birgit Absmanner
  3. Benjamin Weller
  4. Inês CR Barbosa
  5. Björn C Willige
  6. Astrid Fastner
  7. Verena Streit
  8. Sarah A Port
  9. Jean Colcombet
  10. Sergio de la Fuente van Bentem
  11. Heribert Hirt
  12. Bernhard Kuster
  13. Waltraud X Schulze
  14. Ulrich Z Hammes
  15. Claus Schwechheimer
(2014)
Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID
eLife 3:e02860.
https://doi.org/10.7554/eLife.02860

Further reading

    1. Ecology
    2. Plant Biology
    Yaara Oppenheimer-Shaanan et al.
    Research Article

    Root exudates are thought to play an important role in plant-microbial interactions. In return for nutrition, soil bacteria can increase the bioavailability of soil nutrients. However, root exudates typically decrease in situations such as drought, calling into question the efficacy of solvation and bacteria-dependent mineral uptake in such stress. Here we tested the hypothesis of exudate-driven microbial priming on Cupressus saplings grown in forest soil in custom-made rhizotron boxes. A 1-month imposed drought and concomitant inoculations with a mix of Bacillus subtilis and Pseudomonas stutzeri, bacteria species isolated from the forest soil, were applied using factorial design. Direct bacteria counts and visualization by confocal microscopy showed that both bacteria associated with Cupressus Interestingly, root exudation rates increased 2.3-fold with bacteria under drought, as well as irrigation. Forty four metabolites in exudates were significantly different in concentration between irrigated and drought trees, including phenolic acid compounds and quinate. When adding these metabolites as carbon and nitrogen sources to bacterial cultures of both bacterial species, 8 of 9 metabolites stimulated bacterial growth. Importantly, soil phosphorous bioavailability was maintained only in inoculated trees, mitigating drought-induced decrease in leaf phosphorus and iron. Our observations of increased root exudation rate when drought and inoculation regimes were combined, support the idea of root recruitment of beneficial bacteria, especially under water stress.

    1. Plant Biology
    Jeffrey C Berry et al.
    Tools and Resources

    Environmental variability poses a major challenge to any field study. Researchers attempt to mitigate this challenge through replication. Thus, the ability to detect experimental signals is determined by the degree of replication and the amount of environmental variation, noise, within the experimental system. A major source of noise in field studies comes from the natural heterogeneity of soil properties which create microtreatments throughout the field. In addition, the variation within different soil properties is often nonrandomly distributed across a field. We explore this challenge through a sorghum field trial dataset with accompanying plant, microbiome, and soil property data. Diverse sorghum genotypes and two watering regimes were applied in a split-plot design. We describe a process of identifying, estimating, and controlling for the effects of spatially distributed soil properties on plant traits and microbial communities using minimal degrees of freedom. Importantly, this process provides a method with which sources of environmental variation in field data can be identified and adjusted, improving our ability to resolve effects of interest and to quantify subtle phenotypes.