1. Cell Biology
  2. Developmental Biology
Download icon

Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division

  1. Felipe Mora-Bermúdez
  2. Fumio Matsuzaki
  3. Wieland B Huttner  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. RIKEN Center for Developmental Biology, Japan
Research Article
  • Cited 32
  • Views 3,335
  • Annotations
Cite this article as: eLife 2014;3:e02875 doi: 10.7554/eLife.02875

Abstract

Mitotic spindle orientation is crucial for symmetric vs. asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis, in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules and spindle orientation in morphogenesis.

Article and author information

Author details

  1. Felipe Mora-Bermúdez

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Fumio Matsuzaki

    RIKEN Center for Developmental Biology, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Wieland B Huttner

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    For correspondence
    huttner@mpi-cbg.de
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal studies were conducted in accordance with German animal welfare legislation, and the necessary licenses obtained from the regional Ethical Commission for Animal Experimentation of Dresden, Germany.

Reviewing Editor

  1. Freda Miller, The Hospital for Sick Children Research Institute, University of Toronto, Canada

Publication history

  1. Received: March 24, 2014
  2. Accepted: July 3, 2014
  3. Accepted Manuscript published: July 4, 2014 (version 1)
  4. Version of Record published: July 29, 2014 (version 2)

Copyright

© 2014, Mora-Bermúdez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,335
    Page views
  • 332
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Keiichiro Koiwai et al.
    Tools and Resources

    Crustacean aquaculture is expected to be a major source of fishery commodities in the near future. Hemocytes are key players of the immune system in shrimps; however, their classification, maturation, and differentiation are still under debate. To date, only discrete and inconsistent information on the classification of shrimp hemocytes has been reported, showing that the morphological characteristics are not sufficient to resolve their actual roles. Our present study using single-cell RNA sequencing, revealed six types of hemocytes of Marsupenaeus japonicus based on their transcriptional profiles. We identified markers of each subpopulation and predicted the differentiation pathways involved in their maturation. We also predicted cell growth factors that might play crucial roles in hemocyte differentiation. Different immune roles among these subpopulations were suggested from the analysis of differentially expressed immune-related genes. These results provide a unified classification of shrimp hemocytes, which improves the understanding of its immune system.

    1. Cell Biology
    Minmin Song et al.
    Research Article

    Emerging evidence demonstrates the important role of circular RNAs (circRNAs) in regulating pathological processes in various diseases including organ fibrosis. Endometrium fibrosis is the leading cause of uterine infertility, but the role of circRNAs in its pathogenesis is largely unknown. Here, we provide the evidence that upregulation of circPTPN12 in endometrial epithelial cells (EECs) of fibrotic endometrium functions as endogenous sponge of miR-21–5 p to inhibit miR-21–5 p expression and activity, which in turn results in upregulation of ΔNp63α to induce the epithelial mesenchymal transition (EMT) of EECs (EEC–EMT). In a mouse model of endometrium fibrosis, circPTPN12 appears to be a cofactor of driving EEC–EMT and administration of miR-21–5 p could reverse this process and improve endometrial fibrosis. Our findings revealed that the dysfunction of circPTPN12/miR-21–5 p/∆Np63α pathway contributed to the pathogenesis of endometrial fibrosis.