1. Cell Biology
  2. Developmental Biology
Download icon

Microtubules provide directional information for core PCP function

  1. Maja Matis  Is a corresponding author
  2. David A Russler-Germain
  3. Qie Hu
  4. Claire J Tomlin
  5. Jeffrey D Axelrod
  1. University of Münster, Germany
  2. Washington University School of Medicine, United States
  3. University of California, Berkeley, United States
  4. Stanford University School of Medicine, United States
Research Article
  • Cited 61
  • Views 3,111
  • Annotations
Cite this article as: eLife 2014;3:e02893 doi: 10.7554/eLife.02893

Abstract

Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a 'PCP-core' including Frizzled(Fz) and Dishevelled(Dsh)) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization.

Article and author information

Author details

  1. Maja Matis

    University of Münster, Münster, Germany
    For correspondence
    matism@uni-muenster.de
    Competing interests
    The authors declare that no competing interests exist.
  2. David A Russler-Germain

    Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Qie Hu

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Claire J Tomlin

    University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeffrey D Axelrod

    Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Helen McNeill, The Samuel Lunenfeld Research Institute, Canada

Publication history

  1. Received: March 25, 2014
  2. Accepted: August 9, 2014
  3. Accepted Manuscript published: August 14, 2014 (version 1)
  4. Version of Record published: September 2, 2014 (version 2)

Copyright

© 2014, Matis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,111
    Page views
  • 394
    Downloads
  • 61
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Nathan H Williamson et al.
    Research Article Updated
    1. Cell Biology
    2. Plant Biology
    Madhumitha Narasimhan et al.
    Research Article