A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection

  1. Don B Gammon
  2. Sophie Duraffour
  3. Daniel K Rozelle
  4. Heidi Hehnly
  5. Rita Sharma
  6. Michael E Sparks
  7. Cara C West
  8. Ying Chen
  9. James J Moresco
  10. Graciela Andrei
  11. John H Connor
  12. Darryl Conte
  13. Dawn E Gundersen-Rindal
  14. William L Marshall
  15. John Yates
  16. Neal Silverman
  17. Craig C Mello  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. KU Leuven, Belgium
  3. Boston University, United States
  4. Walter Reed Army Institute of Research, United States
  5. The Scripps Research Institute, United States
  6. United States Department of Agriculture, United States
  7. Merck, United States

Abstract

Virus-host interactions drive a remarkable diversity of immune responses and countermeasures. We found that two RNA viruses with broad host ranges, vesicular stomatitis virus (VSV) and Sindbis virus (SINV), are completely restricted in their replication after entry into Lepidopteran cells. This restriction is overcome when cells are co-infected with vaccinia virus (VACV), a vertebrate DNA virus. Using RNAi screening, we show that Lepidopteran RNAi, Nuclear Factor-κB, and ubiquitin-proteasome pathways restrict RNA virus infection. Surprisingly, a highly-conserved, uncharacterized VACV protein, A51R, can partially overcome this virus restriction. We show that A51R is also critical for VACV replication in vertebrate cells and for pathogenesis in mice. Interestingly, A51R colocalizes with, and stabilizes, host microtubules and also associates with ubiquitin. We show that A51R promotes viral protein stability, possibly by preventing ubiquitin-dependent targeting of viral proteins for destruction. Importantly, our studies reveal exciting new opportunities to study virus-host interactions in experimentally-tractable Lepidopteran systems.

Article and author information

Author details

  1. Don B Gammon

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophie Duraffour

    KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel K Rozelle

    Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Heidi Hehnly

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rita Sharma

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael E Sparks

    Walter Reed Army Institute of Research, Silver Spring, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Cara C West

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ying Chen

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. James J Moresco

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Graciela Andrei

    KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  11. John H Connor

    Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Darryl Conte

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dawn E Gundersen-Rindal

    United States Department of Agriculture, Beltsville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. William L Marshall

    Merck, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. John Yates

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Neal Silverman

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Craig C Mello

    University of Massachusetts Medical School, Worcester, United States
    For correspondence
    craig.mello@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal work was approved by the Katholieke Universiteit Leuven Ethics Committee for Animal Care and Use (Permit number: P044-2010) and all animal guidelines and policies were in accordance with the Belgian Royal Decree of 14 November 1993 and the European Directive 86-609-EEC.When necessary, animals were euthanized by administering pentobarbital sodium.

Reviewing Editor

  1. Ruslan Medzhitov, Yale University School of Medicine, United States

Version history

  1. Received: March 26, 2014
  2. Accepted: June 25, 2014
  3. Accepted Manuscript published: June 25, 2014 (version 1)
  4. Accepted Manuscript updated: June 26, 2014 (version 2)
  5. Version of Record published: July 29, 2014 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,823
    Page views
  • 312
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Don B Gammon
  2. Sophie Duraffour
  3. Daniel K Rozelle
  4. Heidi Hehnly
  5. Rita Sharma
  6. Michael E Sparks
  7. Cara C West
  8. Ying Chen
  9. James J Moresco
  10. Graciela Andrei
  11. John H Connor
  12. Darryl Conte
  13. Dawn E Gundersen-Rindal
  14. William L Marshall
  15. John Yates
  16. Neal Silverman
  17. Craig C Mello
(2014)
A single vertebrate DNA virus protein disarms invertebrate immunity to RNA virus infection
eLife 3:e02910.
https://doi.org/10.7554/eLife.02910

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    David J Torres, Paulus Mrass ... Judy L Cannon
    Research Article Updated

    T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions. Our motility analysis found that while the speeds and the overall displacement of T cells vary within all tissues analyzed, T cells in all tissues tended to persist at the same speed. Interestingly, we found that T cells in the lung show a marked population of T cells turning at close to 180o, while T cells in lymph nodes and villi do not exhibit this “reversing” movement. T cells in the lung also showed significantly decreased meandering ratios and increased confinement compared to T cells in lymph nodes and villi. These differences in motility patterns led to a decrease in the total volume scanned by T cells in lung compared to T cells in lymph node and villi. These results suggest that the tissue environment in which T cells move can impact the type of motility and ultimately, the efficiency of T cell search for target cells within specialized tissues such as the lung.