Nucleus reuniens of the thalamus contains head direction cells

  1. Maciej M Jankowski
  2. Md N Islam
  3. Nicholas F Wright
  4. Seralynne D Vann
  5. Jonathan T Erichsen
  6. John P Aggleton
  7. Shane M O'Mara  Is a corresponding author
  1. Trinity College Dublin, Ireland
  2. Cardiff University, United Kingdom

Abstract

Discrete populations of brain cells signal heading direction, rather like a compass. These 'head direction' cells are largely confined to a closely-connected network of sites. We describe, for the first time, a population of head direction cells in nucleus reuniens of the thalamus in the freely-moving rat. This novel subcortical head direction signal potentially modulates the hippocampal CA fields directly and, thus, informs spatial processing and memory.

Article and author information

Author details

  1. Maciej M Jankowski

    Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  2. Md N Islam

    Trinity College Dublin, Dublin, Ireland
    Competing interests
    The authors declare that no competing interests exist.
  3. Nicholas F Wright

    Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Seralynne D Vann

    Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan T Erichsen

    Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. John P Aggleton

    Cardiff University, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Shane M O'Mara

    Trinity College Dublin, Dublin, Ireland
    For correspondence
    smomara@tcd.ie
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experiments were conducted in accordance with European Community directive, 86/609/EC, and the Cruelty toAnimals Act, 1876, and followed Bioresources Ethics Committee, Trinity College, Dublin, Ireland, as well as LAST Ireland and international guidelines of good practice. Surgery was conducted under ketamine/xylazine anaesthesia, an appropriate post-surgery monitoring and analgesia regime was in place, and every effort was made to minimize suffering.

Copyright

© 2014, Jankowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,959
    views
  • 420
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maciej M Jankowski
  2. Md N Islam
  3. Nicholas F Wright
  4. Seralynne D Vann
  5. Jonathan T Erichsen
  6. John P Aggleton
  7. Shane M O'Mara
(2014)
Nucleus reuniens of the thalamus contains head direction cells
eLife 3:e03075.
https://doi.org/10.7554/eLife.03075

Share this article

https://doi.org/10.7554/eLife.03075

Further reading

    1. Neuroscience
    Sainan Liu, Jiepin Huang ... Yan Yang
    Research Article

    Social relationships guide individual behavior and ultimately shape the fabric of society. Primates exhibit particularly complex, differentiated, and multidimensional social relationships, which form interwoven social networks, reflecting both individual social tendencies and specific dyadic interactions. How the patterns of behavior that underlie these social relationships emerge from moment-to-moment patterns of social information processing remains unclear. Here, we assess social relationships among a group of four monkeys, focusing on aggression, grooming, and proximity. We show that individual differences in social attention vary with individual differences in patterns of general social tendencies and patterns of individual engagement with specific partners. Oxytocin administration altered social attention and its relationship to both social tendencies and dyadic relationships, particularly grooming and aggression. Our findings link the dynamics of visual information sampling to the dynamics of primate social networks.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.