Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine

  1. Wilson Wong
  2. Xiao-chen Bai
  3. Alan Brown
  4. Israel S Fernandez
  5. Eric Hanssen
  6. Melanie Condron
  7. Yan Hong Tan
  8. Jake Baum
  9. Sjors HW Scheres  Is a corresponding author
  1. Walter and Eliza Hall Institute of Medical Research, Australia
  2. Medical Research Council Laboratory of Molecular Biology, United Kingdom
  3. Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
  4. Imperial College London, United Kingdom

Abstract

Malaria inflicts an enormous burden on global human health. The emergence of parasite resistance to front-line drugs has prompted a renewed focus on the repositioning of clinically approved drugs as potential anti-malarial therapies. Antibiotics that inhibit protein translation are promising candidates for repositioning. We have solved the cryo-EM structure of the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with emetine at 3.2 Å resolution. Emetine is an anti-protozoan drug used in the treatment of ameobiasis that also displays potent anti-malarial activity. Emetine interacts with the E-site of the ribosomal small subunit and shares a similar binding site with the antibiotic pactamycin, thereby delivering its therapeutic effect by blocking mRNA/tRNA translocation. As the first cryo-EM structure that visualizes an antibiotic bound to any ribosome at atomic resolution, this establishes cryo-EM as a powerful tool for screening and guiding the design of drugs that target parasite translation machinery.

Article and author information

Author details

  1. Wilson Wong

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-chen Bai

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan Brown

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Israel S Fernandez

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Hanssen

    Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Melanie Condron

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Yan Hong Tan

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jake Baum

    Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Sjors HW Scheres

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,580
    views
  • 1,420
    downloads
  • 277
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wilson Wong
  2. Xiao-chen Bai
  3. Alan Brown
  4. Israel S Fernandez
  5. Eric Hanssen
  6. Melanie Condron
  7. Yan Hong Tan
  8. Jake Baum
  9. Sjors HW Scheres
(2014)
Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine
eLife 3:e03080.
https://doi.org/10.7554/eLife.03080

Share this article

https://doi.org/10.7554/eLife.03080

Further reading

    1. Structural Biology and Molecular Biophysics
    Surbhi Dhingra, Prachi M Chopade ... Janesh Kumar
    Research Article

    Kainate receptors are key modulators of synaptic transmission and plasticity in the central nervous system. Different kainate receptor isoforms with distinct spatiotemporal expressions have been identified in the brain. The GluK1-1 splice variant receptors, which are abundant in the adult brain, have an extra fifteen amino acids inserted in the amino-terminal domain (ATD) of the receptor resulting from alternative splicing of exon 9. However, the functional implications of this post-transcriptional modification are not yet clear. We employed a multi-pronged approach using cryogenic electron microscopy, electrophysiology, and other biophysical and biochemical tools to understand the structural and functional impact of this splice insert in the extracellular domain of GluK1 receptors. Our study reveals that the splice insert alters the key gating properties of GluK1 receptors and their modulation by the cognate auxiliary Neuropilin and tolloid-like (Neto) proteins 1 and 2. Mutational analysis identified the role of crucial splice residues that influence receptor properties and their modulation. Furthermore, the cryoEM structure of the variant shows that the presence of exon 9 in GluK1 does not affect the receptor architecture or domain arrangement in the desensitized state. Our study thus provides the first detailed structural and functional characterization of GluK1-1a receptors, highlighting the role of the splice insert in modulating receptor properties and their modulation.

    1. Structural Biology and Molecular Biophysics
    Augustus J Lowry, Pengfei Liang ... Yang Zhang
    Research Article

    The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane. Although recent studies have advanced our understanding of TCS structure–function relationships, the molecular determinants of TCS ion and lipid permeation remain unclear. Here, we show that single mutations along the transmembrane helix (TM) 4/6 interface allow non-scrambling TCS members to permeate phospholipids. In particular, this study highlights the key role of TM 4 in controlling TCS ion and lipid permeation and offers novel insights into the evolution of the TCS superfamily, suggesting that, like TMEM16s, the OSCA/TMEM63 family maintains a conserved potential to permeate ions and phospholipids.