1. Structural Biology and Molecular Biophysics
Download icon

Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine

  1. Wilson Wong
  2. Xiao-chen Bai
  3. Alan Brown
  4. Israel S Fernandez
  5. Eric Hanssen
  6. Melanie Condron
  7. Yan Hong Tan
  8. Jake Baum
  9. Sjors HW Scheres  Is a corresponding author
  1. Walter and Eliza Hall Institute of Medical Research, Australia
  2. Medical Research Council Laboratory of Molecular Biology, United Kingdom
  3. Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Australia
  4. Imperial College London, United Kingdom
Research Article
  • Cited 181
  • Views 13,329
  • Annotations
Cite this article as: eLife 2014;3:e03080 doi: 10.7554/eLife.03080

Abstract

Malaria inflicts an enormous burden on global human health. The emergence of parasite resistance to front-line drugs has prompted a renewed focus on the repositioning of clinically approved drugs as potential anti-malarial therapies. Antibiotics that inhibit protein translation are promising candidates for repositioning. We have solved the cryo-EM structure of the cytoplasmic ribosome from the human malaria parasite, Plasmodium falciparum, in complex with emetine at 3.2 Å resolution. Emetine is an anti-protozoan drug used in the treatment of ameobiasis that also displays potent anti-malarial activity. Emetine interacts with the E-site of the ribosomal small subunit and shares a similar binding site with the antibiotic pactamycin, thereby delivering its therapeutic effect by blocking mRNA/tRNA translocation. As the first cryo-EM structure that visualizes an antibiotic bound to any ribosome at atomic resolution, this establishes cryo-EM as a powerful tool for screening and guiding the design of drugs that target parasite translation machinery.

Article and author information

Author details

  1. Wilson Wong

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiao-chen Bai

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Alan Brown

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Israel S Fernandez

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Hanssen

    Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Melanie Condron

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Yan Hong Tan

    Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jake Baum

    Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Sjors HW Scheres

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    scheres@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Werner Kühlbrandt, Max Planck Institute of Biophysics, Germany

Publication history

  1. Received: April 14, 2014
  2. Accepted: June 6, 2014
  3. Accepted Manuscript published: June 9, 2014 (version 1)
  4. Version of Record published: July 8, 2014 (version 2)

Copyright

© 2014, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,329
    Page views
  • 1,192
    Downloads
  • 181
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Christopher Warren, Nikola P Pavletich
    Research Article

    DNA double-strand breaks (DSBs) can lead to mutations, chromosomal rearrangements, genome instability, and cancer. Central to the sensing of DSBs is the ATM (Ataxia-telangiectasia mutated) kinase, which belongs to the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family. In response to DSBs, ATM is activated by the MRN (Mre11-Rad50-Nbs1) protein complex through a poorly-understood process that also requires double-stranded DNA. Previous studies indicate that the FxF/Y motif of Nbs1 directly binds to ATM, and is required to retain active ATM at sites of DNA damage. Here we report the 2.5 Å resolution cryo-EM structures of human ATM and its complex with the Nbs1 FxF/Y motif. In keeping with previous structures of ATM and its yeast homolog Tel1, the dimeric human ATM kinase adopts a symmetric, butterfly-shaped structure. The conformation of the ATM kinase domain is most similar to the inactive states of other PIKKs, suggesting that activation may involve an analogous realigning the N and C lobes along with relieving the blockage of the substrate-binding site. We also show that the Nbs1 FxF/Y motif binds to a conserved hydrophobic cleft within the Spiral domain of ATM, suggesting an allosteric mechanism of activation. We evaluate the importance of these structural findings with mutagenesis and biochemical assays.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Shannon J McKie et al.
    Research Article

    DNA topoisomerase VI (topo VI) is a type IIB DNA topoisomerase found predominantly in archaea and some bacteria, but also in plants and algae. Since its discovery, topo VI has been proposed to be a DNA decatenase, however robust evidence and a mechanism for its preferential decatenation activity was lacking. Using single-molecule magnetic tweezers measurements and supporting ensemble biochemistry, we demonstrate that Methanosarcina mazei topo VI preferentially unlinks, or decatenates DNA crossings, in comparison to relaxing supercoils, through a preference for certain DNA crossing geometries. In addition, topo VI demonstrates a significant increase in ATPase activity, DNA binding and rate of strand passage, with increasing DNA writhe, providing further evidence that topo VI is a DNA crossing sensor. Our study strongly suggests that topo VI has evolved an intrinsic preference for the unknotting and decatenation of interlinked chromosomes by sensing and preferentially unlinking DNA crossings with geometries close to 90°.