Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics

  1. Simon Roux
  2. Alyse K Hawley
  3. Monica Torres Beltran
  4. Melanie Scofield
  5. Patrick Schwientek
  6. Ramunas Stepanauskas
  7. Tanja Woyke
  8. Steven J Hallam
  9. Matthew B Sullivan  Is a corresponding author
  1. University of Arizona, United States
  2. University of British Columbia, Canada
  3. U.S Department of Energy Joint Genome Institute, United States
  4. Bigelow Laboratory for Ocean Sciences, United States

Abstract

Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks specific virus-host interaction dynamics remain cryptic. Here we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ~1/3 of SUP05 bacteria are viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.

Article and author information

Author details

  1. Simon Roux

    University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alyse K Hawley

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Monica Torres Beltran

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie Scofield

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick Schwientek

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramunas Stepanauskas

    Bigelow Laboratory for Ocean Sciences, East Boothbay, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tanja Woyke

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven J Hallam

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew B Sullivan

    University of Arizona, Tucson, United States
    For correspondence
    mbsulli@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Roux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,539
    views
  • 705
    downloads
  • 181
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Roux
  2. Alyse K Hawley
  3. Monica Torres Beltran
  4. Melanie Scofield
  5. Patrick Schwientek
  6. Ramunas Stepanauskas
  7. Tanja Woyke
  8. Steven J Hallam
  9. Matthew B Sullivan
(2014)
Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics
eLife 3:e03125.
https://doi.org/10.7554/eLife.03125

Share this article

https://doi.org/10.7554/eLife.03125

Further reading

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.