Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics

  1. Simon Roux
  2. Alyse K Hawley
  3. Monica Torres Beltran
  4. Melanie Scofield
  5. Patrick Schwientek
  6. Ramunas Stepanauskas
  7. Tanja Woyke
  8. Steven J Hallam
  9. Matthew B Sullivan  Is a corresponding author
  1. University of Arizona, United States
  2. University of British Columbia, Canada
  3. U.S Department of Energy Joint Genome Institute, United States
  4. Bigelow Laboratory for Ocean Sciences, United States

Abstract

Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks specific virus-host interaction dynamics remain cryptic. Here we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ~1/3 of SUP05 bacteria are viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.

Article and author information

Author details

  1. Simon Roux

    University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alyse K Hawley

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Monica Torres Beltran

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie Scofield

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick Schwientek

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramunas Stepanauskas

    Bigelow Laboratory for Ocean Sciences, East Boothbay, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tanja Woyke

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven J Hallam

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew B Sullivan

    University of Arizona, Tucson, United States
    For correspondence
    mbsulli@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Roux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,529
    views
  • 701
    downloads
  • 179
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Roux
  2. Alyse K Hawley
  3. Monica Torres Beltran
  4. Melanie Scofield
  5. Patrick Schwientek
  6. Ramunas Stepanauskas
  7. Tanja Woyke
  8. Steven J Hallam
  9. Matthew B Sullivan
(2014)
Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics
eLife 3:e03125.
https://doi.org/10.7554/eLife.03125

Share this article

https://doi.org/10.7554/eLife.03125

Further reading

    1. Developmental Biology
    2. Ecology
    Stav Talal, Jon F Harrison ... Arianne J Cease
    Research Article

    Organisms require dietary macronutrients in specific ratios to maximize performance, and variation in macronutrient requirements plays a central role in niche determination. Although it is well recognized that development and body size can have strong and predictable effects on many aspects of organismal function, we lack a predictive understanding of ontogenetic or scaling effects on macronutrient intake. We determined protein and carbohydrate intake throughout development on lab populations of locusts and compared to late instars of field populations. Self-selected protein:carbohydrate targets declined dramatically through ontogeny, due primarily to declines in mass-specific protein consumption rates which were highly correlated with declines in specific growth rates. Lab results for protein consumption rates partly matched results from field-collected locusts. However, field locusts consumed nearly double the carbohydrate, likely due to higher activity and metabolic rates. Combining our results with the available data for animals, both across species and during ontogeny, protein consumption scaled predictably and hypometrically, demonstrating a new scaling rule key for understanding nutritional ecology.

    1. Ecology
    Ivan Pokrovsky, Teja Curk ... Martin Wikelski
    Research Article

    Advances in tracking technologies have revealed the diverse migration patterns of birds, which are critical for range mapping and population estimation. Population trends are usually estimated in breeding ranges where birds remain stationary, but for species that breed in remote areas like the Arctic, these trends are often assessed in over-wintering ranges. Assessing population trends during the wintering season is challenging due to the extensive movements of birds in these ranges, which requires a deep understanding of the movement dynamics. However, these movements remain understudied, particularly in the mid-latitudes, where many Arctic breeders overwinter, increasing uncertainty in their ranges and numbers. Here, we show that the Arctic breeding raptor Rough-legged buzzard, which overwinters in the mid-latitudes, has a specific wintering strategy. After migrating ca. 1500 km from the Arctic to mid-latitudes, the birds continue to move throughout the entire over-wintering period, traveling another 1000 km southwest and then back northeast as the snowline advances. This continuous movement makes their wintering range dynamic throughout the season. In essence, this movement represents an extension of the quick migration process, albeit at a slower pace, and we have termed this migration pattern ‘foxtrot migration’, drawing an analogy to the alternating fast and slow movements of the foxtrot dance. These results highlight the potential errors in range mapping from single mid-winter surveys and emphasize the importance of this migration pattern in assessing the conservation status of bird species. Understanding this migration pattern could help to correctly estimate bird populations in over-wintering ranges, which is especially important for species that nest in hard-to-reach regions such as the Arctic.