1. Ecology
  2. Microbiology and Infectious Disease
Download icon

Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics

  1. Simon Roux
  2. Alyse K Hawley
  3. Monica Torres Beltran
  4. Melanie Scofield
  5. Patrick Schwientek
  6. Ramunas Stepanauskas
  7. Tanja Woyke
  8. Steven J Hallam
  9. Matthew B Sullivan  Is a corresponding author
  1. University of Arizona, United States
  2. University of British Columbia, Canada
  3. U.S Department of Energy Joint Genome Institute, United States
  4. Bigelow Laboratory for Ocean Sciences, United States
Research Article
  • Cited 126
  • Views 5,400
  • Annotations
Cite this article as: eLife 2014;3:e03125 doi: 10.7554/eLife.03125

Abstract

Viruses modulate microbial communities and alter ecosystem functions. However, due to cultivation bottlenecks specific virus-host interaction dynamics remain cryptic. Here we examined 127 single-cell amplified genomes (SAGs) from uncultivated SUP05 bacteria isolated from a marine oxygen minimum zone (OMZ) to identify 69 viral contigs representing five new genera within dsDNA Caudovirales and ssDNA Microviridae. Infection frequencies suggest that ~1/3 of SUP05 bacteria are viral-infected, with higher infection frequency where oxygen-deficiency was most severe. Observed Microviridae clonality suggests recovery of bloom-terminating viruses, while systematic co-infection between dsDNA and ssDNA viruses posits previously unrecognized cooperation modes. Analyses of 186 microbial and viral metagenomes revealed that SUP05 viruses persisted for years, but remained endemic to the OMZ. Finally, identification of virus-encoded dissimilatory sulfite reductase suggests SUP05 viruses reprogram their host's energy metabolism. Together these results demonstrate closely coupled SUP05 virus-host co-evolutionary dynamics with potential to modulate biogeochemical cycling in climate-critical and expanding OMZs.

Article and author information

Author details

  1. Simon Roux

    University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alyse K Hawley

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Monica Torres Beltran

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Melanie Scofield

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Patrick Schwientek

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ramunas Stepanauskas

    Bigelow Laboratory for Ocean Sciences, East Boothbay, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tanja Woyke

    U.S Department of Energy Joint Genome Institute, Walnut Creek, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Steven J Hallam

    University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Matthew B Sullivan

    University of Arizona, Tucson, United States
    For correspondence
    mbsulli@email.arizona.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nicole Dubilier

Publication history

  1. Received: April 17, 2014
  2. Accepted: August 27, 2014
  3. Accepted Manuscript published: August 29, 2014 (version 1)
  4. Version of Record published: September 16, 2014 (version 2)

Copyright

© 2014, Roux et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,400
    Page views
  • 639
    Downloads
  • 126
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Ecology
    Tom WN Walker et al.
    Research Article

    Climate warming is releasing carbon from soils around the world1-3, constituting a positive climate feedback. Warming is also causing species to expand their ranges into new ecosystems4-9. Yet, in most ecosystems, whether range expanding species will amplify or buffer expected soil carbon loss is unknown10. Here we used two whole-community transplant experiments and a follow-up glasshouse experiment to determine whether the establishment of herbaceous lowland plants in alpine ecosystems influences soil carbon content under warming. We found that warming (transplantation to low elevation) led to a negligible decrease in alpine soil carbon content, but its effects became significant and 52% ± 31% (mean ± 95% CIs) larger after lowland plants were introduced at low density into the ecosystem. We present evidence that decreases in soil carbon content likely occurred via lowland plants increasing rates of root exudation, soil microbial respiration and CO2 release under warming. Our findings suggest that warming-induced range expansions of herbaceous plants have the potential to alter climate feedbacks from this system, and that plant range expansions among herbaceous communities may be an overlooked mediator of warming effects on carbon dynamics.

    1. Ecology
    2. Evolutionary Biology
    Longhui Zhao et al.
    Research Article

    Many animals rely on complex signals that target multiple senses to attract mates and repel rivals. These multimodal displays can however also attract unintended receivers, which can be an important driver of signal complexity. Despite being taxonomically widespread, we often lack insight into how multimodal signals evolve from unimodal signals and in particular what roles unintended eavesdroppers play. Here we assess whether the physical movements of parasite defense behavior increase the complexity and attractiveness of an acoustic sexual signal in the little torrent frog (Amolops torrentis). Calling males of this species often display limb movements in order to defend against blood-sucking parasites such as frog-biting midges that eavesdrop on their acoustic signal. Through mate choice tests we show that some of these midge-evoked movements influence female preference for acoustic signals. Our data suggest that midge-induced movements may be incorporated into a sexual display, targeting both hearing and vision in the intended receiver. Females may play an important role in incorporating these multiple components because they prefer signals which combine multiple modalities. Our results thus help to understand the relationship between natural and sexual selection pressure operating on signalers and how in turn this may influence multimodal signal evolution.