Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

  1. Carine Gubelmann
  2. Petra C Schwalie
  3. Sunil K Raghav
  4. Eva Röder
  5. Tenagne Delessa
  6. Elke Kiehlmann
  7. Sebastian M Waszak
  8. Andrea Corsinotti
  9. Gilles Udin
  10. Wiebke Holcombe
  11. Gottfried Rudofsky
  12. Didier Trono
  13. Christian Wolfrum
  14. Bart Deplancke  Is a corresponding author
  1. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  2. Institute of Life Sciences, India
  3. ETH Zürich, Switzerland
  4. European Molecular Biology Laboratory, Germany
  5. University of Edinburgh, Scotland
  6. Diabetologie und Klinische Ernährung Kantonsspital Olten, Switzerland

Abstract

Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 23 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation.

Article and author information

Author details

  1. Carine Gubelmann

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Petra C Schwalie

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Sunil K Raghav

    Institute of Life Sciences, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Eva Röder

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Tenagne Delessa

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Elke Kiehlmann

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Sebastian M Waszak

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrea Corsinotti

    University of Edinburgh, Edinburgh, Scotland
    Competing interests
    The authors declare that no competing interests exist.
  9. Gilles Udin

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Wiebke Holcombe

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Gottfried Rudofsky

    Diabetologie und Klinische Ernährung Kantonsspital Olten, Olten, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Didier Trono

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Wolfrum

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Bart Deplancke

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    bart.deplancke@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were conducted in strict accordance with Swiss law and all experiments were approved by the ethics commission of the state veterinary office (60/2012, 43/2011).

Human subjects: The work on obese subjects was approved by the ethics committee at the University Hospital of Heidelberg and is conforming to the ethical guidelines of the 2000 Helsinki declaration. All participants provided witnessed written informed consent prior entering the study (S-365/2007). The trial was registered as NCT00773565.

Copyright

© 2014, Gubelmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,544
    views
  • 834
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carine Gubelmann
  2. Petra C Schwalie
  3. Sunil K Raghav
  4. Eva Röder
  5. Tenagne Delessa
  6. Elke Kiehlmann
  7. Sebastian M Waszak
  8. Andrea Corsinotti
  9. Gilles Udin
  10. Wiebke Holcombe
  11. Gottfried Rudofsky
  12. Didier Trono
  13. Christian Wolfrum
  14. Bart Deplancke
(2014)
Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network
eLife 3:e03346.
https://doi.org/10.7554/eLife.03346

Share this article

https://doi.org/10.7554/eLife.03346

Further reading

    1. Developmental Biology
    Pénélope Tignard, Karen Pottin ... Marie Anne Breau
    Research Article

    Despite recent progress, the complex roles played by the extracellular matrix in development and disease are still far from being fully understood. Here, we took advantage of the zebrafish sly mutation which affects Laminin γ1, a major component of basement membranes, to explore its role in the development of the olfactory system. Following a detailed characterisation of Laminin distribution in the developing olfactory circuit, we analysed basement membrane integrity, olfactory placode and brain morphogenesis, and olfactory axon development in sly mutants, using a combination of immunochemistry, electron microscopy and quantitative live imaging of cell movements and axon behaviours. Our results point to an original and dual contribution of Laminin γ1-dependent basement membranes in organising the border between the olfactory placode and the adjacent brain: they maintain placode shape and position in the face of major brain morphogenetic movements, they establish a robust physical barrier between the two tissues while at the same time allowing the local entry of the sensory axons into the brain and their navigation towards the olfactory bulb. This work thus identifies key roles of Laminin γ1-dependent basement membranes in neuronal tissue morphogenesis and axon development in vivo.

    1. Developmental Biology
    Natsuko Emura, Florence DM Wavreil ... Mamiko Yajima
    Research Article

    The evolutionary introduction of asymmetric cell division (ACD) into the developmental program facilitates the formation of a new cell type, contributing to developmental diversity and, eventually, species diversification. The micromere of the sea urchin embryo may serve as one of those examples: an ACD at the 16-cell stage forms micromeres unique to echinoids among echinoderms. We previously reported that a polarity factor, activator of G-protein signaling (AGS), plays a crucial role in micromere formation. However, AGS and its associated ACD factors are present in all echinoderms and across most metazoans. This raises the question of what evolutionary modifications of AGS protein or its surrounding molecular environment contributed to the evolutionary acquisition of micromeres only in echinoids. In this study, we learned that the GoLoco motifs at the AGS C-terminus play critical roles in regulating micromere formation in sea urchin embryos. Further, other echinoderms’ AGS or chimeric AGS that contain the C-terminus of AGS orthologs from various organisms showed varied localization and function in micromere formation. In contrast, the sea star or the pencil urchin orthologs of other ACD factors were consistently localized at the vegetal cortex in the sea urchin embryo, suggesting that AGS may be a unique variable factor that facilitates ACD diversity among echinoderms. Consistently, sea urchin AGS appears to facilitate micromere-like cell formation and accelerate the enrichment timing of the germline factor Vasa during early embryogenesis of the pencil urchin, an ancestral type of sea urchin. Based on these observations, we propose that the molecular evolution of a single polarity factor facilitates ACD diversity while preserving the core ACD machinery among echinoderms and beyond during evolution.