Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

  1. Carine Gubelmann
  2. Petra C Schwalie
  3. Sunil K Raghav
  4. Eva Röder
  5. Tenagne Delessa
  6. Elke Kiehlmann
  7. Sebastian M Waszak
  8. Andrea Corsinotti
  9. Gilles Udin
  10. Wiebke Holcombe
  11. Gottfried Rudofsky
  12. Didier Trono
  13. Christian Wolfrum
  14. Bart Deplancke  Is a corresponding author
  1. Ecole Polytechnique Fédérale de Lausanne, Switzerland
  2. Institute of Life Sciences, India
  3. ETH Zürich, Switzerland
  4. European Molecular Biology Laboratory, Germany
  5. University of Edinburgh, Scotland
  6. Diabetologie und Klinische Ernährung Kantonsspital Olten, Switzerland

Abstract

Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 23 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation.

Article and author information

Author details

  1. Carine Gubelmann

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Petra C Schwalie

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Sunil K Raghav

    Institute of Life Sciences, Bhubaneswar, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Eva Röder

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Tenagne Delessa

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Elke Kiehlmann

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Sebastian M Waszak

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Andrea Corsinotti

    University of Edinburgh, Edinburgh, Scotland
    Competing interests
    The authors declare that no competing interests exist.
  9. Gilles Udin

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Wiebke Holcombe

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Gottfried Rudofsky

    Diabetologie und Klinische Ernährung Kantonsspital Olten, Olten, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Didier Trono

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  13. Christian Wolfrum

    ETH Zürich, Schwerzenbach, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  14. Bart Deplancke

    Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    For correspondence
    bart.deplancke@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal experiments were conducted in strict accordance with Swiss law and all experiments were approved by the ethics commission of the state veterinary office (60/2012, 43/2011).

Human subjects: The work on obese subjects was approved by the ethics committee at the University Hospital of Heidelberg and is conforming to the ethical guidelines of the 2000 Helsinki declaration. All participants provided witnessed written informed consent prior entering the study (S-365/2007). The trial was registered as NCT00773565.

Copyright

© 2014, Gubelmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,539
    views
  • 833
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carine Gubelmann
  2. Petra C Schwalie
  3. Sunil K Raghav
  4. Eva Röder
  5. Tenagne Delessa
  6. Elke Kiehlmann
  7. Sebastian M Waszak
  8. Andrea Corsinotti
  9. Gilles Udin
  10. Wiebke Holcombe
  11. Gottfried Rudofsky
  12. Didier Trono
  13. Christian Wolfrum
  14. Bart Deplancke
(2014)
Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network
eLife 3:e03346.
https://doi.org/10.7554/eLife.03346

Share this article

https://doi.org/10.7554/eLife.03346

Further reading

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.

    1. Developmental Biology
    Michele Bertacchi, Gwendoline Maharaux ... Michèle Studer
    Research Article Updated

    The morphogen FGF8 establishes graded positional cues imparting regional cellular responses via modulation of early target genes. The roles of FGF signaling and its effector genes remain poorly characterized in human experimental models mimicking early fetal telencephalic development. We used hiPSC-derived cerebral organoids as an in vitro platform to investigate the effect of FGF8 signaling on neural identity and differentiation. We found that FGF8 treatment increases cellular heterogeneity, leading to distinct telencephalic and mesencephalic-like domains that co-develop in multi-regional organoids. Within telencephalic regions, FGF8 affects the anteroposterior and dorsoventral identity of neural progenitors and the balance between GABAergic and glutamatergic neurons, thus impacting spontaneous neuronal network activity. Moreover, FGF8 efficiently modulates key regulators responsible for several human neurodevelopmental disorders. Overall, our results show that FGF8 signaling is directly involved in both regional patterning and cellular diversity in human cerebral organoids and in modulating genes associated with normal and pathological neural development.