Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke  Is a corresponding author
  1. The Salk Institute for Biological Studies, United States
  2. Yale University School of Medicine, United States

Abstract

The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement, and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands, but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

Article and author information

Author details

  1. Erin D Lew

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Jennifer Oh

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Patrick G Burrola

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Irit Lax

    Yale University School of Medicine, New Haven, CT, United States
    Competing interests
    Irit Lax, is a shareholder in Kolltan Pharmaceuticals.
  5. Anna Zagórska

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Paqui G Través

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Joseph Schelssinger

    Yale University School of Medicine, New Haven, United States
    Competing interests
    Joseph Schelssinger, is a shareholder in Kolltan Pharmaceuticals.
  8. Greg Lemke

    The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    lemke@salk.edu
    Competing interests
    Greg Lemke, is a shareholder in Kolltan Pharmaceuticals.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol of the Salk Institute, Animal Use Protocol No. 11-00051, approval date of record June 3, 2014.

Copyright

© 2014, Lew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,911
    views
  • 1,121
    downloads
  • 210
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke
(2014)
Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities
eLife 3:e03385.
https://doi.org/10.7554/eLife.03385

Share this article

https://doi.org/10.7554/eLife.03385

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.