Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke  Is a corresponding author
  1. The Salk Institute for Biological Studies, United States
  2. Yale University School of Medicine, United States

Abstract

The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement, and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands, but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

Article and author information

Author details

  1. Erin D Lew

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Jennifer Oh

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Patrick G Burrola

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Irit Lax

    Yale University School of Medicine, New Haven, CT, United States
    Competing interests
    Irit Lax, is a shareholder in Kolltan Pharmaceuticals.
  5. Anna Zagórska

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Paqui G Través

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Joseph Schelssinger

    Yale University School of Medicine, New Haven, United States
    Competing interests
    Joseph Schelssinger, is a shareholder in Kolltan Pharmaceuticals.
  8. Greg Lemke

    The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    lemke@salk.edu
    Competing interests
    Greg Lemke, is a shareholder in Kolltan Pharmaceuticals.

Reviewing Editor

  1. Stephen P Goff, Howard Hughes Medical Institute, Columbia University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol of the Salk Institute, Animal Use Protocol No. 11-00051, approval date of record June 3, 2014.

Version history

  1. Received: May 15, 2014
  2. Accepted: September 28, 2014
  3. Accepted Manuscript published: September 29, 2014 (version 1)
  4. Version of Record published: October 23, 2014 (version 2)

Copyright

© 2014, Lew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,890
    Page views
  • 1,056
    Downloads
  • 198
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke
(2014)
Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities
eLife 3:e03385.
https://doi.org/10.7554/eLife.03385

Share this article

https://doi.org/10.7554/eLife.03385

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.