Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke  Is a corresponding author
  1. The Salk Institute for Biological Studies, United States
  2. Yale University School of Medicine, United States

Abstract

The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor-ligand engagement, and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands, but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding 'Gla domain' is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis.

Article and author information

Author details

  1. Erin D Lew

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Jennifer Oh

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Patrick G Burrola

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Irit Lax

    Yale University School of Medicine, New Haven, CT, United States
    Competing interests
    Irit Lax, is a shareholder in Kolltan Pharmaceuticals.
  5. Anna Zagórska

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Paqui G Través

    The Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Joseph Schelssinger

    Yale University School of Medicine, New Haven, United States
    Competing interests
    Joseph Schelssinger, is a shareholder in Kolltan Pharmaceuticals.
  8. Greg Lemke

    The Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    lemke@salk.edu
    Competing interests
    Greg Lemke, is a shareholder in Kolltan Pharmaceuticals.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol of the Salk Institute, Animal Use Protocol No. 11-00051, approval date of record June 3, 2014.

Copyright

© 2014, Lew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,990
    views
  • 1,146
    downloads
  • 211
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin D Lew
  2. Jennifer Oh
  3. Patrick G Burrola
  4. Irit Lax
  5. Anna Zagórska
  6. Paqui G Través
  7. Joseph Schelssinger
  8. Greg Lemke
(2014)
Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities
eLife 3:e03385.
https://doi.org/10.7554/eLife.03385

Share this article

https://doi.org/10.7554/eLife.03385

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.