Synthetic CpG islands reveal DNA sequence determinants of chromatin structure

  1. Elisabeth Wachter
  2. Timo Quante
  3. Cara Merusi
  4. Aleksandra Arczewska
  5. Francis Stewart
  6. Shaun Webb
  7. Adrian Bird  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. Technische Universitaet Dresden, Germany

Abstract

The mammalian genome is punctuated by CpG islands (CGIs), which differ sharply from the bulk genome by being rich in G+C and the dinucleotide CpG. CGIs often include transcription initiation sites and display 'active' histone marks, notably histone H3 lysine 4 methylation. In embryonic stem cells (ESCs) some CGIs adopt a 'bivalent' chromatin state bearing simultaneous 'active' and 'inactive' chromatin marks. To determine whether CGI chromatin is developmentally programmed at specific genes or is imposed by shared features of CGI DNA, we integrated artificial CGI-like DNA sequences into the ESC genome. We found that bivalency is the default chromatin structure for CpG-rich, G+C-rich DNA. A high CpG density alone is not sufficient for this effect, as A+T-rich sequence settings invariably provoke de novo DNA methylation leading to loss of CGI signature chromatin. We conclude that both CpG-richness and G+C-richness are required for induction of signature chromatin structures at CGIs.

Article and author information

Author details

  1. Elisabeth Wachter

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Timo Quante

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Cara Merusi

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Aleksandra Arczewska

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Francis Stewart

    Technische Universitaet Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Shaun Webb

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Adrian Bird

    University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    A.Bird@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wachter et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,743
    views
  • 697
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth Wachter
  2. Timo Quante
  3. Cara Merusi
  4. Aleksandra Arczewska
  5. Francis Stewart
  6. Shaun Webb
  7. Adrian Bird
(2014)
Synthetic CpG islands reveal DNA sequence determinants of chromatin structure
eLife 3:e03397.
https://doi.org/10.7554/eLife.03397

Share this article

https://doi.org/10.7554/eLife.03397

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Colum Walsh, Avinash Thakur
    Insight

    Inserting artificially-generated ‘DNA islands’ into a genome has shed new light on why some DNA sequences are methylated and others are not.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.