1. Ecology
  2. Chromosomes and Gene Expression
Download icon

Concerning RNA-guided gene drives for the alteration of wild populations

  1. Kevin M Esvelt  Is a corresponding author
  2. Andrea L Smidler
  3. Flaminia Catteruccia
  4. George M Church
  1. Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, United States
  2. Harvard School of Public Health, United States
Feature Article
  • Cited 381
  • Views 45,257
  • Annotations
Cite this article as: eLife 2014;3:e03401 doi: 10.7554/eLife.03401


Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.

Article and author information

Author details

  1. Kevin M Esvelt

    Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, United States
    For correspondence
    Competing interests
    Kevin M Esvelt, Filed for a patent concerning RNA-guided gene drives.
  2. Andrea L Smidler

    Harvard School of Public Health, Boston, United States
    Competing interests
    Andrea L Smidler, Filed for a patent concerning RNA-guided gene drives.
  3. Flaminia Catteruccia

    Harvard School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  4. George M Church

    Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, United States
    Competing interests
    George M Church, Filed for a patent concerning RNA-guided gene drives.

Reviewing Editor

  1. Diethard Tautz, Max Planck Institute for Evolutionary Biology, Germany

Publication history

  1. Received: May 18, 2014
  2. Accepted: July 9, 2014
  3. Accepted Manuscript published: July 17, 2014 (version 1)
  4. Accepted Manuscript updated: July 17, 2014 (version 2)
  5. Version of Record published: August 1, 2014 (version 3)


© 2014, Esvelt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 45,257
    Page views
  • 6,443
  • 381

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Jakob Thyrring, Lloyd S Peck
    Research Article Updated

    Whether global latitudinal diversity gradients exist in rocky intertidal α-diversity and across functional groups remains unknown. Using literature data from 433 intertidal sites, we investigated α-diversity patterns across 155° of latitude, and whether local-scale or global-scale structuring processes control α-diversity. We, furthermore, investigated how the relative composition of functional groups changes with latitude. α-Diversity differed among hemispheres with a mid-latitudinal peak in the north, and a non-significant unimodal pattern in the south, but there was no support for a tropical-to-polar decrease in α-diversity. Although global-scale drivers had no discernible effect, the local-scale drivers significantly affected α-diversity, and our results reveal that latitudinal diversity gradients are outweighed by local processes. In contrast to α-diversity patterns, species richness of three functional groups (predators, grazers, and suspension feeders) declined with latitude, coinciding with an inverse gradient in algae. Polar and tropical intertidal data were sparse, and more sampling is required to improve knowledge of marine biodiversity.

    1. Ecology
    Corey J A Bradshaw et al.
    Research Article

    The causes of Sahul's megafauna extinctions remain uncertain, although several interacting factors were likely responsible. To examine the relative support for hypotheses regarding plausible ecological mechanisms underlying these extinctions, we constructed the first stochastic, age-structured models for 13 extinct megafauna species from five functional/taxonomic groups, as well as eight extant species within these groups for comparison. Perturbing specific demographic rates individually, we tested which species were more demographically susceptible to extinction, and then compared these relative sensitivities to the fossil-derived extinction chronology. Our models show that the macropodiformes were the least demographically susceptible to extinction, followed by carnivores, monotremes, vombatiform herbivores, and large birds. Five of the eight extant species were as or more susceptible than the extinct species. There was no clear relationship between extinction susceptibility and the extinction chronology for any perturbation scenario, while body mass and generation length explained much of the variation in relative risk. Our results reveal that the actual mechanisms leading to the observed extinction chronology were unlikely related to variation in demographic susceptibility per se, but were possibly driven instead by finer-scale variation in climate change and/or human prey choice and relative hunting success.