1. Ecology
  2. Chromosomes and Gene Expression
Download icon

Concerning RNA-guided gene drives for the alteration of wild populations

  1. Kevin M Esvelt  Is a corresponding author
  2. Andrea L Smidler
  3. Flaminia Catteruccia
  4. George M Church
  1. Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, United States
  2. Harvard School of Public Health, United States
Feature Article
  • Cited 412
  • Views 45,923
  • Annotations
Cite this article as: eLife 2014;3:e03401 doi: 10.7554/eLife.03401


Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.

Article and author information

Author details

  1. Kevin M Esvelt

    Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, United States
    For correspondence
    Competing interests
    Kevin M Esvelt, Filed for a patent concerning RNA-guided gene drives.
  2. Andrea L Smidler

    Harvard School of Public Health, Boston, United States
    Competing interests
    Andrea L Smidler, Filed for a patent concerning RNA-guided gene drives.
  3. Flaminia Catteruccia

    Harvard School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  4. George M Church

    Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, United States
    Competing interests
    George M Church, Filed for a patent concerning RNA-guided gene drives.

Reviewing Editor

  1. Diethard Tautz, Max Planck Institute for Evolutionary Biology, Germany

Publication history

  1. Received: May 18, 2014
  2. Accepted: July 9, 2014
  3. Accepted Manuscript published: July 17, 2014 (version 1)
  4. Accepted Manuscript updated: July 17, 2014 (version 2)
  5. Version of Record published: August 1, 2014 (version 3)


© 2014, Esvelt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 45,923
    Page views
  • 6,553
  • 412

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    David R M Smith et al.
    Research Article

    The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modelling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.

    1. Ecology
    Piero Amodio et al.
    Research Article

    Eurasian jays have been reported to protect their caches by responding to cues about either the visual perspective or current desire of an observing conspecific, similarly to other corvids. Here, we used established paradigms to test whether these birds can - like humans - integrate multiple cues about different mental states and perform an optimal response accordingly. Across five experiments, which also include replications of previous work, we found little evidence that our jays adjusted their caching behaviour in line with the visual perspective and current desire of another agent, neither by integrating these social cues nor by responding to only one type of cue independently. These results raise questions about the reliability of the previously reported effects and highlight several key issues affecting reliability in comparative cognition research.