Abstract

Thousands of small Open Reading Frames (smORFs) with the potential to encode small peptides of fewer than 100 amino acids exist in our genomes. However, the number of smORFs actually translated, and their molecular and functional roles are still unclear. Here we present a genome-wide assessment of smORF translation by ribosomal profiling of polysomal fractions in Drosophila. We detect two types of smORFs bound by multiple ribosomes and thus undergoing productive translation. The 'longer' smORFs of around 80 amino-acids resemble canonical proteins in translational metrics and conservation, and display a propensity to contain transmembrane motifs. The 'dwarf' smORFs are in general shorter (around 20 amino-acid long), are mostly found in 5'-UTRs and non-coding RNAs, are less well conserved and have no bioinformatic indicators of peptide function. Our findings indicate that thousands of smORFs are translated in metazoan genomes, reinforcing the idea that smORFs are an abundant and fundamental genome component.

Article and author information

Author details

  1. Julie L Aspden

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ying Chen Eyre-Walker

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Rose J Philips

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Unum Amin

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Muhammad Ali S Mumtaz

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Brocard

    University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Juan-Pablo Couso

    University of Sussex, Brighton, United Kingdom
    For correspondence
    j.p.couso@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Aspden et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,858
    views
  • 1,459
    downloads
  • 295
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Julie L Aspden
  2. Ying Chen Eyre-Walker
  3. Rose J Philips
  4. Unum Amin
  5. Muhammad Ali S Mumtaz
  6. Michele Brocard
  7. Juan-Pablo Couso
(2014)
Extensive translation of small ORFs revealed by Poly-Ribo-Seq
eLife 3:e03528.
https://doi.org/10.7554/eLife.03528

Share this article

https://doi.org/10.7554/eLife.03528

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.