1. Biochemistry and Chemical Biology
  2. Structural Biology and Molecular Biophysics
Download icon

Structure and substrate ion binding in the sodium/proton antiporter PaNhaP

  1. David Wöhlert
  2. Özkan Yildiz  Is a corresponding author
  3. Werner Kühlbrandt
  1. Max Planck Institute of Biophysics, Germany
Research Article
  • Cited 55
  • Views 2,121
  • Annotations
Cite this article as: eLife 2014;3:e03579 doi: 10.7554/eLife.03579

Abstract

Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed structures of antiporters with bound substrate ions are essential for understanding how they work. We have resolved the substrate ion in the dimeric, electroneutral sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2 Å, and have determined its structure in two different conformations at pH8 and pH4. The ion is coordinated by three acidic sidechains, a water molecule, a serine and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the deepest point of a negatively charged cytoplasmic funnel. A second narrow polar channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP is cooperative at pH6 but not at pH5. Cooperativity is due to pH-dependent allosteric coupling of protomers through two histidines at the dimer interface. Combined with comprehensive transport studies, the structures of PaNhaP offer unique new insights into the transport mechanism of sodium/proton antiporters.

Article and author information

Author details

  1. David Wöhlert

    Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    No competing interests declared.
  2. Özkan Yildiz

    Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    For correspondence
    Oezkan.Yildiz@biophys.mpg.de
    Competing interests
    No competing interests declared.
  3. Werner Kühlbrandt

    Max Planck Institute of Biophysics, Frankfurt am Main, Germany
    Competing interests
    Werner Kühlbrandt, Reviewing editor, eLife..

Reviewing Editor

  1. Richard Aldrich, The University of Texas at Austin, United States

Publication history

  1. Received: June 6, 2014
  2. Accepted: November 25, 2014
  3. Accepted Manuscript published: November 26, 2014 (version 1)
  4. Accepted Manuscript updated: November 28, 2014 (version 2)
  5. Version of Record published: December 16, 2014 (version 3)

Copyright

© 2014, Wöhlert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,121
    Page views
  • 265
    Downloads
  • 55
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Palur V Raghuvamsi et al.
    Research Article Updated

    The spike (S) protein is the main handle for SARS-CoV-2 to enter host cells via surface angiotensin-converting enzyme 2 (ACE2) receptors. How ACE2 binding activates proteolysis of S protein is unknown. Here, using amide hydrogen–deuterium exchange mass spectrometry and molecular dynamics simulations, we have mapped the S:ACE2 interaction interface and uncovered long-range allosteric propagation of ACE2 binding to sites necessary for host-mediated proteolysis of S protein, critical for viral host entry. Unexpectedly, ACE2 binding enhances dynamics at a distal S1/S2 cleavage site and flanking protease docking site ~27 Å away while dampening dynamics of the stalk hinge (central helix and heptad repeat [HR]) regions ~130 Å away. This highlights that the stalk and proteolysis sites of the S protein are dynamic hotspots in the prefusion state. Our findings provide a dynamics map of the S:ACE2 interface in solution and also offer mechanistic insights into how ACE2 binding is allosterically coupled to distal proteolytic processing sites and viral–host membrane fusion. Thus, protease docking sites flanking the S1/S2 cleavage site represent alternate allosteric hotspot targets for potential therapeutic development.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Ricardo M Santos, Anton Sirota
    Research Article Updated

    Cholinergic fast time-scale modulation of cortical physiology is critical for cognition, but direct local measurement of neuromodulators in vivo is challenging. Choline oxidase (ChOx)-based electrochemical biosensors have been used to capture fast cholinergic signals in behaving animals. However, these transients might be biased by local field potential and O2-evoked enzymatic responses. Using a novel Tetrode-based Amperometric ChOx (TACO) sensor, we performed highly sensitive and selective simultaneous measurement of ChOx activity (COA) and O2. In vitro and in vivo experiments, supported by mathematical modeling, revealed that non-steady-state enzyme responses to O2 give rise to phasic COA dynamics. This mechanism accounts for most of COA transients in the hippocampus, including those following locomotion bouts and sharp-wave/ripples. Our results suggest that it is unfeasible to probe phasic cholinergic signals under most behavioral paradigms with current ChOx biosensors. This confound is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.