A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites

  1. Ben C L van Schaijk
  2. Ivo H J Ploemen
  3. Takeshi Annoura
  4. Martijn W Vos
  5. Foquet Lander
  6. Geert-Jan van Gemert
  7. Severine Chevalley-Maurel
  8. Marga van de Vegte-Bolmer
  9. Mohammed Sajid
  10. Jean-Francois Franetich
  11. Audrey Lorthiois
  12. Geert Leroux-Roels
  13. Philip Meuleman
  14. Cornelius C Hermsen
  15. Dominique Mazier
  16. Stephen L Hoffman
  17. Chris J Janse
  18. Shahid M Khan
  19. Robert W Sauerwein  Is a corresponding author
  1. Radboud University Nijmegen Medical Center, Netherlands
  2. Institute for Translational Vaccinology, Netherlands
  3. Jikei University School of Medicine, Japan
  4. Ghent University and University Hospital, Belgium
  5. Leiden University Medical Center, Netherlands
  6. Université Pierre et Marie Curie-Paris 6, France
  7. Sanaria Inc., United States

Abstract

A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. Here we present data on safety and protective efficacy using sporozoites with deletions of two genes i.e. the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high level protection. The human PfΔb9ΔslarpGAP generated without drug-resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine.

Article and author information

Author details

  1. Ben C L van Schaijk

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  2. Ivo H J Ploemen

    Institute for Translational Vaccinology, Bilthoven, Netherlands
    Competing interests
    No competing interests declared.
  3. Takeshi Annoura

    Jikei University School of Medicine, Tokyo, Japan
    Competing interests
    No competing interests declared.
  4. Martijn W Vos

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  5. Foquet Lander

    Ghent University and University Hospital, Ghent, Belgium
    Competing interests
    No competing interests declared.
  6. Geert-Jan van Gemert

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  7. Severine Chevalley-Maurel

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  8. Marga van de Vegte-Bolmer

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  9. Mohammed Sajid

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  10. Jean-Francois Franetich

    Université Pierre et Marie Curie-Paris 6, Paris, France
    Competing interests
    No competing interests declared.
  11. Audrey Lorthiois

    Université Pierre et Marie Curie-Paris 6, Paris, France
    Competing interests
    No competing interests declared.
  12. Geert Leroux-Roels

    Ghent University and University Hospital, Ghent, Belgium
    Competing interests
    No competing interests declared.
  13. Philip Meuleman

    Ghent University and University Hospital, Ghent, Belgium
    Competing interests
    No competing interests declared.
  14. Cornelius C Hermsen

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  15. Dominique Mazier

    Université Pierre et Marie Curie-Paris 6, Paris, France
    Competing interests
    No competing interests declared.
  16. Stephen L Hoffman

    Sanaria Inc., Rockville, United States
    Competing interests
    Stephen L Hoffman, CEO of Sanaria Inc, biotechnology company focused on whole sporozoite malaria vaccines.
  17. Chris J Janse

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  18. Shahid M Khan

    Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  19. Robert W Sauerwein

    Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
    For correspondence
    Robert.Sauerwein@radboudumc.nl
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: All animal experiments with rodent parasites performed at the LUMC (Netherlands) were approved by the Animal Experiments Committee of the Leiden University Medical Center (DEC 07171; DEC 10099) and at the RUNMC (Netherlands) by the Radboud University Experimental Animal Ethical Committee (RUDEC 2008-123, RUDEC 2008-148, RUDEC 2010-250, RUDEC 2011-022, RUDEC 2011-208). The Dutch Experiments on Animal Act is established under European guidelines (EU directive 86/609/CEE) regarding the Protection of Animals used for Experimental and Other Scientific Purposes.Human liver-uPA-SCID mice (chimeric mice) were produced as described before. The study protocol for infecting these mice with P. falciparum sporozoites was approved by the animal ethics committee of the Faculty of Medicine and Health Sciences of the Ghent University.The study protocol was approved by the animal ethics committee of the Faculty of Medicine and Health Sciences of the Ghent University.

Human subjects: Primary human hepatocytes were isolated from healthy parts of human liver fragments which were collected during unrelated surgery in agreement with French national ethical regulations and after oral informed consent from adult patients undergoing partial hepatectomy as part of their medical treatment (Service de Chirurgie Digestive, H�pato-Bilio-Pancr�atique et Transplantation H�patique, H�pital Piti�-Salp�tri�re, Paris, France). The collection and use of this material for the purposes of the study presented here were undertaken in accordance with French national ethical guidelines under Article L. 1121-1 and article L. 1211-2

Copyright

© 2014, van Schaijk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,851
    views
  • 331
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben C L van Schaijk
  2. Ivo H J Ploemen
  3. Takeshi Annoura
  4. Martijn W Vos
  5. Foquet Lander
  6. Geert-Jan van Gemert
  7. Severine Chevalley-Maurel
  8. Marga van de Vegte-Bolmer
  9. Mohammed Sajid
  10. Jean-Francois Franetich
  11. Audrey Lorthiois
  12. Geert Leroux-Roels
  13. Philip Meuleman
  14. Cornelius C Hermsen
  15. Dominique Mazier
  16. Stephen L Hoffman
  17. Chris J Janse
  18. Shahid M Khan
  19. Robert W Sauerwein
(2014)
A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites
eLife 3:e03582.
https://doi.org/10.7554/eLife.03582

Share this article

https://doi.org/10.7554/eLife.03582

Further reading

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.