TAF4, a subunit of transcription factor II D, directs promoter occupancy of nuclear receptor HNF4A during post-natal hepatocyte differentiation

  1. Daniil Alpern
  2. Diana Langer
  3. Benoit Ballester
  4. Stephanie Le Gras
  5. Christophe Romier
  6. Gabrielle Mengus
  7. Irwin Davidson  Is a corresponding author
  1. Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, France
  2. Aix-Marseille Université, UMR1090 TAGC, France

Abstract

The functions of the TAF subunits of mammalian TFIID in physiological processes remain poorly characterised. Here we describe a novel function of TAFs in directing genomic occupancy of a transcriptional activator. Using liver-specific inactivation in mice, we show that the TAF4 subunit of TFIID is required for post-natal hepatocyte maturation. TAF4 promotes pre-initiation complex (PIC) formation at post-natal expressed liver function genes and down-regulates a subset of embryonic expressed genes by increased RNA polymerase II pausing. The TAF4-TAF12 heterodimer interacts directly with HNF4A and in vivo TAF4 is necessary to maintain HNF4A-directed embryonic gene expression at post-natal stages and promotes HNF4A occupancy of functional cis-regulatory elements adjacent to the transcription start sites of post-natal expressed genes. Stable HNF4A occupancy of these regulatory elements requires TAF4-dependent PIC formation highlighting that these are mutually dependent events. Local promoter-proximal HNF4A-TFIID interactions therefore act as instructive signals for post-natal hepatocyte differentiation.

Article and author information

Author details

  1. Daniil Alpern

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Diana Langer

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Benoit Ballester

    Aix-Marseille Université, UMR1090 TAGC, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephanie Le Gras

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Christophe Romier

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Gabrielle Mengus

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Ilkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Irwin Davidson

    Institut de Genetique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
    For correspondence
    irwin@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal Experiments were performed in compliance with National Animal Care Guidelines (European Commission directive 86/609/CEE; French decree no.87-848).

Copyright

© 2014, Alpern et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.03613

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.