Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

  1. Fabian Schueren
  2. Thomas Lingner
  3. Rosemol George
  4. Julia Hofhuis
  5. Corinna Dickel
  6. Jutta Gärtner
  7. Sven Thoms  Is a corresponding author
  1. University Medical Center, Georg-August-University Göttingen, Germany
  2. Institute for Microbiology and Genetics, Georg-August-University Göttingen, Germany

Abstract

Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB getting targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes.

Article and author information

Author details

  1. Fabian Schueren

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Lingner

    Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rosemol George

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia Hofhuis

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Corinna Dickel

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jutta Gärtner

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Thoms

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    For correspondence
    sven.thoms@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: June 9, 2014
  2. Accepted: September 22, 2014
  3. Accepted Manuscript published: September 23, 2014 (version 1)
  4. Version of Record published: October 16, 2014 (version 2)

Copyright

© 2014, Schueren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,844
    Page views
  • 534
    Downloads
  • 123
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Schueren
  2. Thomas Lingner
  3. Rosemol George
  4. Julia Hofhuis
  5. Corinna Dickel
  6. Jutta Gärtner
  7. Sven Thoms
(2014)
Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
eLife 3:e03640.
https://doi.org/10.7554/eLife.03640

Further reading

    1. Cell Biology
    2. Microbiology and Infectious Disease
    Heledd Davies, Hugo Belda ... Moritz Treeck
    Tools and Resources

    Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the P. falciparum exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria causing parasite, PfEMP1. We generated independent TurboID fusions of 2 proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.

    1. Cell Biology
    Bo Wang, Zheyong Liang ... Peijun Liu
    Research Article

    The primary cilium plays important roles in regulating cell differentiation, signal transduction, and tissue organization. Dysfunction of the primary cilium can lead to ciliopathies and cancer. The formation and organization of the primary cilium are highly associated with cell polarity proteins, such as the apical polarity protein CRB3. However, the molecular mechanisms by which CRB3 regulates ciliogenesis and the location of CRB3 remain unknown. Here, we show that CRB3, as a navigator, regulates vesicle trafficking in γ-tubulin ring complex (γTuRC) assembly during ciliogenesis and cilium-related Hh and Wnt signaling pathways in tumorigenesis. Crb3 knockout mice display severe defects of the primary cilium in the mammary ductal lumen and renal tubule, while mammary epithelial-specific Crb3 knockout mice exhibit the promotion of ductal epithelial hyperplasia and tumorigenesis. CRB3 is essential for lumen formation and ciliary assembly in the mammary epithelium. We demonstrate that CRB3 localizes to the basal body and that CRB3 trafficking is mediated by Rab11-positive endosomes. Significantly, CRB3 interacts with Rab11 to navigate GCP6/Rab11 trafficking vesicles to CEP290, resulting in intact γTuRC assembly. In addition, CRB3-depleted cells are unresponsive to the activation of the Hh signaling pathway, while CRB3 regulates the Wnt signaling pathway. Therefore, our studies reveal the molecular mechanisms by which CRB3 recognizes Rab11-positive endosomes to facilitate ciliogenesis and regulates cilium-related signaling pathways in tumorigenesis.