Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals

  1. Fabian Schueren
  2. Thomas Lingner
  3. Rosemol George
  4. Julia Hofhuis
  5. Corinna Dickel
  6. Jutta Gärtner
  7. Sven Thoms  Is a corresponding author
  1. University Medical Center, Georg-August-University Göttingen, Germany
  2. Institute for Microbiology and Genetics, Georg-August-University Göttingen, Germany

Abstract

Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB getting targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes.

Article and author information

Author details

  1. Fabian Schueren

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Thomas Lingner

    Institute for Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Rosemol George

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Julia Hofhuis

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Corinna Dickel

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jutta Gärtner

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Sven Thoms

    University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
    For correspondence
    sven.thoms@med.uni-goettingen.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Schueren et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,924
    views
  • 574
    downloads
  • 156
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabian Schueren
  2. Thomas Lingner
  3. Rosemol George
  4. Julia Hofhuis
  5. Corinna Dickel
  6. Jutta Gärtner
  7. Sven Thoms
(2014)
Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals
eLife 3:e03640.
https://doi.org/10.7554/eLife.03640

Share this article

https://doi.org/10.7554/eLife.03640

Further reading

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bhumil Patel, Maryke Grobler ... Needhi Bhalla
    Research Article

    Meiotic crossover recombination is essential for both accurate chromosome segregation and the generation of new haplotypes for natural selection to act upon. This requirement is known as crossover assurance and is one example of crossover control. While the conserved role of the ATPase, PCH-2, during meiotic prophase has been enigmatic, a universal phenotype when pch-2 or its orthologs are mutated is a change in the number and distribution of meiotic crossovers. Here, we show that PCH-2 controls the number and distribution of crossovers by antagonizing their formation. This antagonism produces different effects at different stages of meiotic prophase: early in meiotic prophase, PCH-2 prevents double-strand breaks from becoming crossover-eligible intermediates, limiting crossover formation at sites of initial double-strand break formation and homolog interactions. Later in meiotic prophase, PCH-2 winnows the number of crossover-eligible intermediates, contributing to the designation of crossovers and ultimately, crossover assurance. We also demonstrate that PCH-2 accomplishes this regulation through the meiotic HORMAD, HIM-3. Our data strongly support a model in which PCH-2’s conserved role is to remodel meiotic HORMADs throughout meiotic prophase to destabilize crossover-eligible precursors and coordinate meiotic recombination with synapsis, ensuring the progressive implementation of meiotic recombination and explaining its function in the pachytene checkpoint and crossover control.