The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem-cell-niche function

Abstract

Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. Here we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin- MSCs participate in fetal skeletogenesis, and lose MSC activity soon after birth. In contrast, quiescent neural-crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC-niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ PDGFRα- cell population also contains Schwann-cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC-niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.

Article and author information

Author details

  1. Joan Isern

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrés García-García

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana M Martín

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Lorena Arranz

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Martín-Pérez

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Torroja

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Fátima Sánchez-Cabo

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Simón Méndez-Ferrer

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    smendez@cnic.es
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experimental procedures were approved by the Animal Care and Use Committees of the Spanish National Cardiovascular Research Center and Comunidad Autónoma de Madrid (PA-47/11 and ES280790000176)

Copyright

© 2014, Isern et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,237
    views
  • 1,599
    downloads
  • 238
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joan Isern
  2. Andrés García-García
  3. Ana M Martín
  4. Lorena Arranz
  5. Daniel Martín-Pérez
  6. Carlos Torroja
  7. Fátima Sánchez-Cabo
  8. Simón Méndez-Ferrer
(2014)
The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem-cell-niche function
eLife 3:e03696.
https://doi.org/10.7554/eLife.03696

Share this article

https://doi.org/10.7554/eLife.03696

Further reading

    1. Stem Cells and Regenerative Medicine
    Ryosuke Isotani, Masaki Igarashi ... Toshimasa Yamauchi
    Research Article

    Cigarette smoking is a well-known risk factor inducing the development and progression of various diseases. Nicotine (NIC) is the major constituent of cigarette smoke. However, knowledge of the mechanism underlying the NIC-regulated stem cell functions is limited. In this study, we demonstrate that NIC increases the abundance and proliferative activity of murine intestinal stem cells (ISCs) in vivo and ex vivo. Moreover, NIC induces Yes-associated protein (YAP) /Transcriptional coactivator with PDZ-binding motif (TAZ) and Notch signaling in ISCs via α7-nicotinic acetylcholine receptor (nAchR) and protein kinase C (PKC) activation; this effect was not detected in Paneth cells. The inhibition of Notch signaling by dibenzazepine (DBZ) nullified the effects of NIC on ISCs. NIC enhances in vivo tumor formation from ISCs after loss of the tumor suppressor gene Apc, DBZ inhibited NIC-induced tumor growth. Hence, this study identifies a NIC-triggered pathway regulating the stemness and tumorigenicity of ISCs and suggests the use of DBZ as a potential therapeutic strategy for treating intestinal tumors.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.