The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem-cell-niche function

Abstract

Mesenchymal stem cells (MSCs) and osteolineage cells contribute to the hematopoietic stem cell (HSC) niche in the bone marrow of long bones. However, their developmental relationships remain unclear. Here we demonstrate that different MSC populations in the developing marrow of long bones have distinct functions. Proliferative mesoderm-derived nestin- MSCs participate in fetal skeletogenesis, and lose MSC activity soon after birth. In contrast, quiescent neural-crest-derived nestin+ cells preserve MSC activity, but do not generate fetal chondrocytes. Instead, they differentiate into HSC-niche-forming MSCs, helping to establish the HSC niche by secreting Cxcl12. Perineural migration of these cells to the bone marrow requires the ErbB3 receptor. The neonatal Nestin-GFP+ PDGFRα- cell population also contains Schwann-cell precursors, but does not comprise mature Schwann cells. Thus, in the developing bone marrow HSC-niche-forming MSCs share a common origin with sympathetic peripheral neurons and glial cells, and ontogenically distinct MSCs have non-overlapping functions in endochondrogenesis and HSC niche formation.

Article and author information

Author details

  1. Joan Isern

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrés García-García

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Ana M Martín

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Lorena Arranz

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Martín-Pérez

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Torroja

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Fátima Sánchez-Cabo

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Simón Méndez-Ferrer

    Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
    For correspondence
    smendez@cnic.es
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Giulio Cossu, University of Manchester, United Kingdom

Ethics

Animal experimentation: Experimental procedures were approved by the Animal Care and Use Committees of the Spanish National Cardiovascular Research Center and Comunidad Autónoma de Madrid (PA-47/11 and ES280790000176)

Version history

  1. Received: June 16, 2014
  2. Accepted: September 24, 2014
  3. Accepted Manuscript published: September 25, 2014 (version 1)
  4. Version of Record published: October 20, 2014 (version 2)

Copyright

© 2014, Isern et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,216
    views
  • 1,575
    downloads
  • 233
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joan Isern
  2. Andrés García-García
  3. Ana M Martín
  4. Lorena Arranz
  5. Daniel Martín-Pérez
  6. Carlos Torroja
  7. Fátima Sánchez-Cabo
  8. Simón Méndez-Ferrer
(2014)
The neural crest is a source of mesenchymal stem cells with specialized hematopoietic stem-cell-niche function
eLife 3:e03696.
https://doi.org/10.7554/eLife.03696

Share this article

https://doi.org/10.7554/eLife.03696

Further reading

    1. Stem Cells and Regenerative Medicine
    Sarah Duchamp de Chastaigne, Catherine M Sawai
    Insight

    A new mathematical model can estimate the number of precursor cells that contribute to regenerating blood cells in mice.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.