Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation

  1. Christian K Roy
  2. Sara Olson
  3. Brenton R Graveley
  4. Phillip D Zamore
  5. Melissa J Moore  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Massachusetts Medical School, United States
  2. University of Connecticut Health Center, United States

Abstract

Many RNAs, including pre-mRNAs and long non-coding RNAs, can be thousands of nucleotides long and undergo complex post-transcriptional processing. Multiple sites of alternative splicing within a single gene exponentially increases the number of possible spliced isoforms, with most human genes currently estimated to express at least ten. To understand the mechanisms underlying these complex isoform expression patterns methods are needed that faithfully maintain long-range exon connectivity information in individual RNA molecules. Here, we describe SeqZip, a methodology that uses RNA-templated DNA-DNA ligation to retain and compress connectivity between distant sequences within single RNA molecules. Using this assay, we test proposed coordination between distant sites of alternative exon utilization in mouse Fn1 and we characterize the extraordinary exon diversity of Drosophila melanogaster Dscam1.

Article and author information

Author details

  1. Christian K Roy

    RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Sara Olson

    Institute for Systems Genomics, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    No competing interests declared.
  3. Brenton R Graveley

    Institute for Systems Genomics, Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    No competing interests declared.
  4. Phillip D Zamore

    RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    Phillip D Zamore, Reviewing Editor, eLife.
  5. Melissa J Moore

    RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    melissa.moore@umassmed.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Aviv Regev, Broad Institute of MIT and Harvard, United States

Version history

  1. Received: June 15, 2014
  2. Accepted: April 12, 2015
  3. Accepted Manuscript published: April 13, 2015 (version 1)
  4. Version of Record published: May 26, 2015 (version 2)

Copyright

© 2015, Roy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,348
    views
  • 761
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian K Roy
  2. Sara Olson
  3. Brenton R Graveley
  4. Phillip D Zamore
  5. Melissa J Moore
(2015)
Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation
eLife 4:e03700.
https://doi.org/10.7554/eLife.03700

Share this article

https://doi.org/10.7554/eLife.03700

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.