Neural mechanisms of economic commitment in the human medial prefrontal cortex

  1. Konstantinos Tsetsos  Is a corresponding author
  2. Valentin Wyart
  3. S Paul Shorkey
  4. Christopher Summerfield
  1. University of Oxford, United Kingdom
  2. Ecole Normale Supérieure, France

Abstract

Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (MFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal MFC encoded stimulus value only when participants rejected (or deferred accepting) a prospect. Dorsal MFC BOLD signals reflected two decision biases - to defer commitments to later, and to weight potential losses more heavily than gains - that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex.

Article and author information

Author details

  1. Konstantinos Tsetsos

    University of Oxford, Oxford, United Kingdom
    For correspondence
    konstantinos.tsetsos@psy.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Valentin Wyart

    Ecole Normale Supérieure, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. S Paul Shorkey

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher Summerfield

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Eve Marder, Brandeis University, United States

Ethics

Human subjects: All participants gave informed consent to participate in the experiment, agreeing also that we would store anonymously their data, analyse them, and publish the corresponding results in peer-reviewed journals. Ethical approval was provided by the local committee in Oxford: NRES Committee South Central - Oxford A, identifier 09/H0604/11. All procedures accorded with the Declaration of Helsinki.

Version history

  1. Received: June 16, 2014
  2. Accepted: October 16, 2014
  3. Accepted Manuscript published: October 21, 2014 (version 1)
  4. Version of Record published: November 11, 2014 (version 2)

Copyright

© 2014, Tsetsos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,568
    Page views
  • 178
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantinos Tsetsos
  2. Valentin Wyart
  3. S Paul Shorkey
  4. Christopher Summerfield
(2014)
Neural mechanisms of economic commitment in the human medial prefrontal cortex
eLife 3:e03701.
https://doi.org/10.7554/eLife.03701

Share this article

https://doi.org/10.7554/eLife.03701

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.