Abstract

Most amino acids can be encoded by several synonymous codons, which are used at unequal frequencies. The significance of unequal codon usage remains unclear. One hypothesis is that frequent codons are translated relatively rapidly. However, there is little direct, in vivo evidence regarding codon-specific translation rates. Here, we generate high-coverage data using ribosome profiling in yeast, analyze using a novel algorithm, and deduce events at the A and P-sites of the ribosome. Different codons are decoded at different rates in the A-site. In general frequent codons are decoded more quickly than rare codons, and AT-rich codons are decoded more quickly than GC-rich codons. At the P-site, proline is slow in forming peptide bonds. We also apply our algorithm to short footprints from a different conformation of the ribosome, and find strong, amino-acid specific (not codon-specific) effects that may reflect interactions with the exit tunnel of the ribosome.

Article and author information

Author details

  1. Justin Gardin

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rukhsana Yeasmin

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alisa Yurovsky

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ying Cai

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Steve Skiena

    Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruce Futcher

    Stony Brook University, Stony Brook, United States
    For correspondence
    bfutcher@gmail.com
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Gardin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,175
    views
  • 708
    downloads
  • 178
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Justin Gardin
  2. Rukhsana Yeasmin
  3. Alisa Yurovsky
  4. Ying Cai
  5. Steve Skiena
  6. Bruce Futcher
(2014)
Measurement of average decoding rates of the 61 sense codons in vivo
eLife 3:e03735.
https://doi.org/10.7554/eLife.03735

Share this article

https://doi.org/10.7554/eLife.03735

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    2. Physics of Living Systems
    Debabrata Dey, Shir Marciano ... Gideon Schreiber
    Research Article

    For drugs to be active they have to reach their targets. Within cells this requires crossing the cell membrane, and then free diffusion, distribution, and availability. Here, we explored the in-cell diffusion rates and distribution of a series of small molecular fluorescent drugs, in comparison to proteins, by microscopy and fluorescence recovery after photobleaching (FRAP). While all proteins diffused freely, we found a strong correlation between pKa and the intracellular diffusion and distribution of small molecule drugs. Weakly basic, small-molecule drugs displayed lower fractional recovery after photobleaching and 10- to-20-fold slower diffusion rates in cells than in aqueous solutions. As, more than half of pharmaceutical drugs are weakly basic, they, are protonated in the cell cytoplasm. Protonation, facilitates the formation of membrane impermeable ionic form of the weak base small molecules. This results in ion trapping, further reducing diffusion rates of weakly basic small molecule drugs under macromolecular crowding conditions where other nonspecific interactions become more relevant and dominant. Our imaging studies showed that acidic organelles, particularly the lysosome, captured these molecules. Surprisingly, blocking lysosomal import only slightly increased diffusion rates and fractional recovery. Conversely, blocking protonation by N-acetylated analogues, greatly enhanced their diffusion and fractional recovery after FRAP. Based on these results, N-acetylation of small molecule drugs may improve the intracellular availability and distribution of weakly basic, small molecule drugs within cells.