Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition

  1. Xiao-Yong Li
  2. Melissa M Harrison
  3. Jacqueline E Villalta
  4. Tommy Kaplan
  5. Michael B Eisen  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California Berkeley, United States
  2. University of Wisconsin, United States
  3. Hebrew University of Jerusalem, Israel

Abstract

We describe the genome-wide distributions and temporal dynamics of nucleosomes and post-translational histone modifications throughout the maternal-to-zygotic transition in embryos of Drosophila melanogaster. At mitotic cycle 8, when few zygotic genes are being transcribed, embryonic chromatin is in a relatively simple state: there are few nucleosome free regions, undetectable levels of the histone methylation marks characteristic of mature chromatin, and low levels of histone acetylation at a relatively small number of loci. Histone acetylation increases by cycle 12, but it is not until cycle 14 that nucleosome free regions and domains of histone methylation become widespread. Early histone acetylation is strongly associated with regions that we have previously shown to be bound in early embryos by the maternally deposited transcription factor Zelda, suggesting that Zelda triggers a cascade of events, including the accumulation of specific histone modifications, that plays a role in the subsequent activation of these sequences.

Article and author information

Author details

  1. Xiao-Yong Li

    Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Melissa M Harrison

    University of Wisconsin, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacqueline E Villalta

    Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tommy Kaplan

    Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael B Eisen

    Howard Hughes Medical Institute, University of California Berkeley, Berkeley, United States
    For correspondence
    mbeisen@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Version history

  1. Received: June 19, 2014
  2. Accepted: October 13, 2014
  3. Accepted Manuscript published: October 14, 2014 (version 1)
  4. Version of Record published: November 18, 2014 (version 2)

Copyright

© 2014, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,770
    views
  • 793
    downloads
  • 134
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiao-Yong Li
  2. Melissa M Harrison
  3. Jacqueline E Villalta
  4. Tommy Kaplan
  5. Michael B Eisen
(2014)
Establishment of regions of genomic activity during the Drosophila maternal to zygotic transition
eLife 3:e03737.
https://doi.org/10.7554/eLife.03737

Share this article

https://doi.org/10.7554/eLife.03737

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.