Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state

  1. Yarden Katz
  2. Feifei Li
  3. Nicole J Lambert
  4. Ethan S Sokol
  5. Wai Leong Tam
  6. Albert W Cheng
  7. Edoardo M Airoldi
  8. Christopher J Lengner
  9. Piyush B Gupta
  10. Zhengquan Yu
  11. Rudolf Jaenisch
  12. Christopher B Burge  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. China Agricultural University, China
  3. Whitehead Institute for Biomedical Research, United States
  4. Harvard University, United States
  5. University of Pennsylvania, United States

Abstract

The conserved Musashi (Msi) family of RNA binding proteins are expressed in stem/progenitor and cancer cells, but generally absent from differentiated cells, consistent with a role in cell state regulation. We found that Msi genes are rarely mutated but frequently overexpressed in human cancers, and are associated with an epithelial-luminal cell state. Using ribosome profiling and RNA-seq analysis of genetic mouse models in neuronal and mammary cell types, we found that Msis regulate translation of genes implicated in epithelial cell biology and epithelial-to-mesenchymal transition (EMT) and promote an epithelial splicing pattern. Overexpression of Msi proteins inhibited translation of genes required for EMT, including Jagged1, and repressed EMT in cell culture and in mammary gland in vivo, while knockdown in epithelial cancer cells promoted loss of epithelial identity. Our results show that mammalian Msi proteins contribute to an epithelial gene expression program in neural and mammary cell types.

Article and author information

Author details

  1. Yarden Katz

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Feifei Li

    China Agricultural University, Beijing, China
    Competing interests
    No competing interests declared.
  3. Nicole J Lambert

    Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Ethan S Sokol

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Wai Leong Tam

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  6. Albert W Cheng

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. Edoardo M Airoldi

    Harvard University, Cambridge, United States
    Competing interests
    Edoardo M Airoldi, Reviewing Editor, eLife.
  8. Christopher J Lengner

    University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  9. Piyush B Gupta

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Zhengquan Yu

    China Agricultural University, Beijing, China
    Competing interests
    No competing interests declared.
  11. Rudolf Jaenisch

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  12. Christopher B Burge

    Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    cburge@mit.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Benjamin J Blencowe, University of Toronto, Canada

Ethics

Animal experimentation: Mice of the 129SvJae strain were used, and the K14-rTTA strain were obtained from JAX (stock number: 007678). Animal care was performed in accordance with institutional guidelines and approved by the Committee on Animal Care, Department of Comparative Medicine, Massachusetts Institute of Technology, under animal protocol 1013-088-16

Version history

  1. Received: July 6, 2014
  2. Accepted: November 5, 2014
  3. Accepted Manuscript published: November 7, 2014 (version 1)
  4. Version of Record published: December 15, 2014 (version 2)

Copyright

© 2014, Katz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,998
    views
  • 651
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yarden Katz
  2. Feifei Li
  3. Nicole J Lambert
  4. Ethan S Sokol
  5. Wai Leong Tam
  6. Albert W Cheng
  7. Edoardo M Airoldi
  8. Christopher J Lengner
  9. Piyush B Gupta
  10. Zhengquan Yu
  11. Rudolf Jaenisch
  12. Christopher B Burge
(2014)
Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state
eLife 3:e03915.
https://doi.org/10.7554/eLife.03915

Share this article

https://doi.org/10.7554/eLife.03915

Further reading

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article Updated

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.

    1. Cancer Biology
    Chenxi Gao, Huaibin Ge ... Jing Hu
    Research Article

    BRAFV600E mutation is a driver mutation in the serrated pathway to colorectal cancers. BRAFV600E drives tumorigenesis through constitutive downstream extracellular signal-regulated kinase (ERK) activation, but high-intensity ERK activation can also trigger tumor suppression. Whether and how oncogenic ERK signaling can be intrinsically adjusted to a ‘just-right’ level optimal for tumorigenesis remains undetermined. In this study, we found that FAK (Focal adhesion kinase) expression was reduced in BRAFV600E-mutant adenomas/polyps in mice and patients. In Vil1-Cre;BRAFLSL-V600E/+;Ptk2fl/fl mice, Fak deletion maximized BRAFV600E’s oncogenic activity and increased cecal tumor incidence to 100%. Mechanistically, our results showed that Fak loss, without jeopardizing BRAFV600E-induced ERK pathway transcriptional output, reduced EGFR (epidermal growth factor receptor)-dependent ERK phosphorylation. Reduction in ERK phosphorylation increased the level of Lgr4, promoting intestinal stemness and cecal tumor formation. Our findings show that a ‘just-right’ ERK signaling optimal for BRAFV600E-induced cecal tumor formation can be achieved via Fak loss-mediated downregulation of ERK phosphorylation.