Abstract

Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a β3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a β-1,3-N-acetylglucosaminyltransferase with catalytic activity towards β-galactose but rather a β-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and β-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.

Article and author information

Author details

  1. Jeremy L Praissman

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. David H Live

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Shuo Wang

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Annapoorani Ramiah

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoeisha S Chinoy

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Geert-Jan Boons

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kelley W Moremen

    University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lance Wells

    University of Georgia, Athens, United States
    For correspondence
    lwells@ccrc.uga.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Praissman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,106
    views
  • 298
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy L Praissman
  2. David H Live
  3. Shuo Wang
  4. Annapoorani Ramiah
  5. Zoeisha S Chinoy
  6. Geert-Jan Boons
  7. Kelley W Moremen
  8. Lance Wells
(2014)
B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan
eLife 3:e03943.
https://doi.org/10.7554/eLife.03943

Share this article

https://doi.org/10.7554/eLife.03943

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lena Kallweit, Eric Daniel Hamlett ... Scott Horowitz
    Research Article

    As the world population ages, new molecular targets in aging and Alzheimer’s disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with the accumulation of phospho-tau immunostaining contained rG4s, rG4 structure can drive tau aggregation, and rG4 staining density depended on APOE genotype in the human tissue examined. Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation is linked to proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sasha L Evans, Bethany A Haynes ... Rivka L Isaacson
    Insight

    Nature has inspired the design of improved inhibitors for cancer-causing proteins.