1. Cell Biology
  2. Neuroscience
Download icon

Astrocytes refine cortical connectivity at dendritic spines

  1. W Christopher Risher
  2. Sagar Patel
  3. Il Hwan Kim
  4. Akiyoshi Uezu
  5. Srishti Bhagat
  6. Daniel K Wilton
  7. Louis-Jan Pilaz
  8. Jonnathan Singh Alvarado
  9. Osman Y Calhan
  10. Debra L Silver
  11. Beth Stevens
  12. Nicole Calakos
  13. Scott H Soderling
  14. Cagla Eroglu  Is a corresponding author
  1. Duke University Medical Center, United States
  2. Boston Children's Hospital, Harvard Medical School, United States
Research Article
  • Cited 62
  • Views 7,899
  • Annotations
Cite this article as: eLife 2014;3:e04047 doi: 10.7554/eLife.04047

Abstract

During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.

Article and author information

Author details

  1. W Christopher Risher

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sagar Patel

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Il Hwan Kim

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Akiyoshi Uezu

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Srishti Bhagat

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel K Wilton

    Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Louis-Jan Pilaz

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonnathan Singh Alvarado

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Osman Y Calhan

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Debra L Silver

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Beth Stevens

    Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicole Calakos

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Scott H Soderling

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Cagla Eroglu

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    For correspondence
    c.eroglu@cellbio.duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (# A195-11-08) of Duke University Medical Center. The mice were euthanized by following the approved protocols which were performed under avertin anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Liqun Luo, Howard Hughes Medical Institute, Stanford University, United States

Publication history

  1. Received: July 16, 2014
  2. Accepted: December 16, 2014
  3. Accepted Manuscript published: December 17, 2014 (version 1)
  4. Version of Record published: January 8, 2015 (version 2)

Copyright

© 2014, Risher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,899
    Page views
  • 1,452
    Downloads
  • 62
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Cell Biology
    Chaitra Rao et al.
    Research Article Updated

    The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here, we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.

    1. Cell Biology
    Dianne Lumaquin et al.
    Tools and Resources

    Lipid droplets are lipid storage organelles found in nearly all cell types from adipocytes to cancer cells. Although increasingly implicated in disease, current methods to study lipid droplets in vertebrate models rely on static imaging or the use of fluorescent dyes, limiting investigation of their rapid in vivo dynamics. To address this, we created a lipid droplet transgenic reporter in whole animals and cell culture by fusing tdTOMATO to Perilipin-2 (PLIN2), a lipid droplet structural protein. Expression of this transgene in transparent casper zebrafish enabled in vivo imaging of adipose depots responsive to nutrient deprivation and high-fat diet. Simultaneously, we performed a large-scale in vitro chemical screen of 1280 compounds and identified several novel regulators of lipolysis in adipocytes. Using our Tg(-3.5ubb:plin2-tdTomato) zebrafish line, we validated several of these novel regulators and revealed an unexpected role for nitric oxide in modulating adipocyte lipid droplets. Similarly, we expressed the PLIN2-tdTOMATO transgene in melanoma cells and found that the nitric oxide pathway also regulated lipid droplets in cancer. This model offers a tractable imaging platform to study lipid droplets across cell types and disease contexts using chemical, dietary, or genetic perturbations.