Abstract

During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines.

Article and author information

Author details

  1. W Christopher Risher

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sagar Patel

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Il Hwan Kim

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Akiyoshi Uezu

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Srishti Bhagat

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel K Wilton

    Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Louis-Jan Pilaz

    Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonnathan Singh Alvarado

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Osman Y Calhan

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Debra L Silver

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Beth Stevens

    Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Nicole Calakos

    Department of Neurobiology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Scott H Soderling

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Cagla Eroglu

    Department of Cell Biology, Duke University Medical Center, Durham, United States
    For correspondence
    c.eroglu@cellbio.duke.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Liqun Luo, Howard Hughes Medical Institute, Stanford University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (# A195-11-08) of Duke University Medical Center. The mice were euthanized by following the approved protocols which were performed under avertin anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 16, 2014
  2. Accepted: December 16, 2014
  3. Accepted Manuscript published: December 17, 2014 (version 1)
  4. Version of Record published: January 8, 2015 (version 2)

Copyright

© 2014, Risher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,136
    views
  • 1,603
    downloads
  • 136
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. W Christopher Risher
  2. Sagar Patel
  3. Il Hwan Kim
  4. Akiyoshi Uezu
  5. Srishti Bhagat
  6. Daniel K Wilton
  7. Louis-Jan Pilaz
  8. Jonnathan Singh Alvarado
  9. Osman Y Calhan
  10. Debra L Silver
  11. Beth Stevens
  12. Nicole Calakos
  13. Scott H Soderling
  14. Cagla Eroglu
(2014)
Astrocytes refine cortical connectivity at dendritic spines
eLife 3:e04047.
https://doi.org/10.7554/eLife.04047

Share this article

https://doi.org/10.7554/eLife.04047

Further reading

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.