Polycomb and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype

  1. James C McGann  Is a corresponding author
  2. Jon A Oyer
  3. Saurabh Garg
  4. Huilan Yao
  5. Jun Liu
  6. Xin Feng
  7. Lujian Liao
  8. John R Yates
  9. Gail Mandel
  1. Oregon Health and Science University, United States
  2. Robert H. Lurie Comprehensive Cancer Center, Feinberg School Of Medicine, United States
  3. Indiana University, United States
  4. Baylor College of Medicine, United States
  5. School of Life Sciences, East China Normal University, China
  6. The Scripps Research Institute, United States

Abstract

The bivalent hypothesis posits that genes encoding developmentalregulators required for early lineage decisions are poised in stem/progenitor cells by the balance between a repressor histone modification (H3K27me3), mediated by the Polycomb Repressor Complex 2 (PRC2), and an activator modification (H3K4me3). Here, we test whether this mechanism applies equally to genes that are not required until terminal differentiation. We focus on the RE1 Silencing Transcription Factor (REST) because it is expressed highly in stem cells, and is an established global repressor of terminal neuronal genes. Elucidation of the REST complex, and comparison of chromatin marks and gene expression levels in control and REST-deficient stem cells, shows that REST target genes are poised by a mechanism independent of Polycomb, even at promoters which bear the H3K27me3 mark. Specifically, genes under REST control are actively repressed in stem cells by a balance of the H3K4me3 mark and a repressor complex that relies on histone deacetylase activity. Thus, chromatin distinctions between pro-neural and terminal neuronal genes are established at the embryonic stem cell stage by two parallel, but distinct, repressor pathways.

Article and author information

Author details

  1. James C McGann

    Oregon Health and Science University, Portland, United States
    For correspondence
    mcgann@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Jon A Oyer

    Robert H. Lurie Comprehensive Cancer Center, Feinberg School Of Medicine, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Saurabh Garg

    Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huilan Yao

    Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Liu

    Indiana University, Bloomington, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xin Feng

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lujian Liao

    School of Life Sciences, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  8. John R Yates

    The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Gail Mandel

    Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, McGann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,150
    views
  • 451
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James C McGann
  2. Jon A Oyer
  3. Saurabh Garg
  4. Huilan Yao
  5. Jun Liu
  6. Xin Feng
  7. Lujian Liao
  8. John R Yates
  9. Gail Mandel
(2014)
Polycomb and REST-associated histone deacetylases are independent pathways toward a mature neuronal phenotype
eLife 3:e04235.
https://doi.org/10.7554/eLife.04235

Share this article

https://doi.org/10.7554/eLife.04235

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.