Structural basis of diverse membrane target recognitions by ankyrins

  1. Chao Wang
  2. Zhiyi Wei
  3. Keyu Chen
  4. Fei Ye
  5. Cong Yu
  6. Vann Bennett
  7. Mingjie Zhang  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. Howard Hughes Medical Institute, Duke University Medical Center, United States

Abstract

Ankyrin adaptors together with their spectrin partners coordinate diverse ion channels and cell adhesion molecules within plasma membrane domains and thereby promote physiological activities including fast signaling in the heart and nervous system. Ankyrins specifically bind to numerous membrane targets through their 24 ankyrin repeats (ANK repeats), although the mechanism for the facile and independent evolution of these interactions has not been resolved. Here we report the structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide, respectively, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites. These structures establish a framework for understanding the evolution of ankyrins' membrane targets, with implications for other proteins containing extended ANK repeat domains.

Article and author information

Author details

  1. Chao Wang

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhiyi Wei

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Keyu Chen

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Fei Ye

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Cong Yu

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Vann Bennett

    Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingjie Zhang

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    mzhang@ust.hk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,511
    views
  • 577
    downloads
  • 67
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Wang
  2. Zhiyi Wei
  3. Keyu Chen
  4. Fei Ye
  5. Cong Yu
  6. Vann Bennett
  7. Mingjie Zhang
(2014)
Structural basis of diverse membrane target recognitions by ankyrins
eLife 3:e04353.
https://doi.org/10.7554/eLife.04353

Share this article

https://doi.org/10.7554/eLife.04353

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.