Structural basis of diverse membrane target recognitions by ankyrins

  1. Chao Wang
  2. Zhiyi Wei
  3. Keyu Chen
  4. Fei Ye
  5. Cong Yu
  6. Vann Bennett
  7. Mingjie Zhang  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. Howard Hughes Medical Institute, Duke University Medical Center, United States

Abstract

Ankyrin adaptors together with their spectrin partners coordinate diverse ion channels and cell adhesion molecules within plasma membrane domains and thereby promote physiological activities including fast signaling in the heart and nervous system. Ankyrins specifically bind to numerous membrane targets through their 24 ankyrin repeats (ANK repeats), although the mechanism for the facile and independent evolution of these interactions has not been resolved. Here we report the structures of ANK repeats in complex with an inhibitory segment from the C-terminal regulatory domain and with a sodium channel Nav1.2 peptide, respectively, showing that the extended, extremely conserved inner groove spanning the entire ANK repeat solenoid contains multiple target binding sites capable of accommodating target proteins with very diverse sequences via combinatorial usage of these sites. These structures establish a framework for understanding the evolution of ankyrins' membrane targets, with implications for other proteins containing extended ANK repeat domains.

Article and author information

Author details

  1. Chao Wang

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhiyi Wei

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  3. Keyu Chen

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  4. Fei Ye

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  5. Cong Yu

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  6. Vann Bennett

    Howard Hughes Medical Institute, Duke University Medical Center, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingjie Zhang

    Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    mzhang@ust.hk
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2014, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,474
    views
  • 559
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Wang
  2. Zhiyi Wei
  3. Keyu Chen
  4. Fei Ye
  5. Cong Yu
  6. Vann Bennett
  7. Mingjie Zhang
(2014)
Structural basis of diverse membrane target recognitions by ankyrins
eLife 3:e04353.
https://doi.org/10.7554/eLife.04353

Share this article

https://doi.org/10.7554/eLife.04353

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Senem Ntourmas, Martin Sachs ... Dominic B Bernkopf
    Research Article

    Activation of the Wnt/β-catenin pathway crucially depends on the polymerization of dishevelled 2 (DVL2) into biomolecular condensates. However, given the low affinity of known DVL2 self-interaction sites and its low cellular concentration, it is unclear how polymers can form. Here, we detect oligomeric DVL2 complexes at endogenous protein levels in human cell lines, using a biochemical ultracentrifugation assay. We identify a low-complexity region (LCR4) in the C-terminus whose deletion and fusion decreased and increased the complexes, respectively. Notably, LCR4-induced complexes correlated with the formation of microscopically visible multimeric condensates. Adjacent to LCR4, we mapped a conserved domain (CD2) promoting condensates only. Molecularly, LCR4 and CD2 mediated DVL2 self-interaction via aggregating residues and phenylalanine stickers, respectively. Point mutations inactivating these interaction sites impaired Wnt pathway activation by DVL2. Our study discovers DVL2 complexes with functional importance for Wnt/β-catenin signaling. Moreover, we provide evidence that DVL2 condensates form in two steps by pre-oligomerization via high-affinity interaction sites, such as LCR4, and subsequent condensation via low-affinity interaction sites, such as CD2.

    1. Biochemistry and Chemical Biology
    Bikash Adhikari, Katharina Schneider ... Elmar Wolf
    Research Article

    The development of proteolysis targeting chimeras (PROTACs), which induce the degradation of target proteins by bringing them into proximity with cellular E3 ubiquitin ligases, has revolutionized drug development. While the human genome encodes more than 600 different E3 ligases, current PROTACs use only a handful of them, drastically limiting their full potential. Furthermore, many PROTAC development campaigns fail because the selected E3 ligase candidates are unable to induce degradation of the particular target of interest. As more and more ligands for novel E3 ligases are discovered, the chemical effort to identify the best E3 ligase for a given target is exploding. Therefore, a genetic system to identify degradation-causing E3 ligases and suitable target/E3 ligase pairs is urgently needed. Here, we used the well-established dimerization of the FKBP12 protein and FRB domain by rapamycin to bring the target protein WDR5 into proximity with candidate E3 ligases. Strikingly, this rapamycin-induced proximity assay (RiPA) revealed that VHL, but not Cereblon, is able to induce WDR5 degradation - a finding previously made by PROTACs, demonstrating its predictive power. By optimizing the steric arrangement of all components and fusing the target protein with a minimal luciferase, RiPA can identify the ideal E3 for any target protein of interest in living cells, significantly reducing and focusing the chemical effort in the early stages of PROTAC development.