1. Developmental Biology
Download icon

Hox genes control vertebrate body elongation by collinear Wnt repression

  1. Nicolas Denans
  2. Tadahiro Iimura
  3. Olivier Pourquié  Is a corresponding author
  1. Stanford School of Medicine, United States
  2. Stowers Institute for Medical Research, United States
  3. University of Strasbourg, France
Research Article
  • Cited 51
  • Views 5,682
  • Annotations
Cite this article as: eLife 2015;4:e04379 doi: 10.7554/eLife.04379

Abstract

In vertebrates, the total number of vertebrae is precisely defined. Vertebrae derive from embryonic somites which are continuously produced posteriorly from the presomitic mesoderm (PSM) during body formation. We show that in the chicken embryo, activation of posterior Hox genes (paralogs 9-13) in the tail-bud correlates with the slowing-down of axis elongation. Our data indicate that a subset of progressively more posterior Hox genes, which are collinearly activated in vertebral precursors, repress Wnt activity with increasing strength. This leads to a graded repression of the Brachyury/T transcription factor, reducing mesoderm ingression and slowing down the elongation process. Due to the continuation of somite formation, this mechanism leads to the progressive reduction of PSM size. This ultimately brings the retinoic acid (RA)-producing segmented region in close vicinity to the tail bud, potentially accounting for the termination of segmentation and axis elongation.

Article and author information

Author details

  1. Nicolas Denans

    Department of Developmental Biology, Stanford School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tadahiro Iimura

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivier Pourquié

    Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg, Illkirch, France
    For correspondence
    pourquie@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: August 14, 2014
  2. Accepted: February 20, 2015
  3. Accepted Manuscript published: February 26, 2015 (version 1)
  4. Version of Record published: March 16, 2015 (version 2)

Copyright

© 2015, Denans et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,682
    Page views
  • 1,101
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Neta Erez et al.
    Research Article

    A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus<strong>.</strong> Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.

    1. Developmental Biology
    Feng Wang et al.
    Research Article

    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.