Genetic transformation of structural and functional circuitry rewires the Drosophila brain

  1. Sonia Sen
  2. Deshou Cao
  3. Ramveer Choudhary
  4. Silvia Biagini
  5. Jing W Wang
  6. Heinrich Reichert
  7. K VijayRaghavan  Is a corresponding author
  1. National Centre for Biological Sciences, Tata Institute for Fundamental Research, India
  2. University of California, San Diego, United States
  3. Institute for Molecular Oncology, Italy
  4. University of Basel, Switzerland

Abstract

Acquisition of distinct neuronal identities during development is critical for the assembly of diverse functional neural circuits in the brain. In both vertebrates and invertebrates, intrinsic determinants are thought to act in neural progenitors to specify their identity and the identity of their neuronal progeny. However, the extent to which individual factors can contribute to this is poorly understood. We investigate the role of orthodenticle in the specification of an identified neuroblast (neuronal progenitor) lineage in the Drosophila brain. Loss of orthodenticle from this neuroblast affects molecular properties, neuroanatomical features and functional inputs of progeny neurons, such that an entire central complex lineage transforms into a functional olfactory projection neuron lineage. This ability to change functional macrocircuitry of the brain through changes in gene expression in a single neuroblast reveals a surprising capacity for novel circuit formation in the brain and provides a paradigm for large-scale evolutionary modification of circuitry.

Article and author information

Author details

  1. Sonia Sen

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
    Competing interests
    No competing interests declared.
  2. Deshou Cao

    Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  3. Ramveer Choudhary

    Institute for Molecular Oncology, Milan, Italy
    Competing interests
    No competing interests declared.
  4. Silvia Biagini

    Institute for Molecular Oncology, Milan, Italy
    Competing interests
    No competing interests declared.
  5. Jing W Wang

    Division of Biological Sciences, University of California, San Diego, San Diego, United States
    Competing interests
    No competing interests declared.
  6. Heinrich Reichert

    Department of Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    No competing interests declared.
  7. K VijayRaghavan

    Department of Developmental Biology and Genetics, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
    For correspondence
    vijay@ncbs.res.in
    Competing interests
    K VijayRaghavan, Senior editor, eLife.

Copyright

© 2014, Sen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,677
    views
  • 216
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sonia Sen
  2. Deshou Cao
  3. Ramveer Choudhary
  4. Silvia Biagini
  5. Jing W Wang
  6. Heinrich Reichert
  7. K VijayRaghavan
(2014)
Genetic transformation of structural and functional circuitry rewires the Drosophila brain
eLife 3:e04407.
https://doi.org/10.7554/eLife.04407

Share this article

https://doi.org/10.7554/eLife.04407

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Mitchell Bestry, Alexander N Larcombe ... David Martino
    Research Article

    Alcohol consumption in pregnancy can affect genome regulation in the developing offspring but results have been contradictory. We employed a physiologically relevant murine model of short-term moderate prenatal alcohol exposure (PAE) resembling common patterns of alcohol consumption in pregnancy in humans. Early moderate PAE was sufficient to affect site-specific DNA methylation in newborn pups without altering behavioural outcomes in adult littermates. Whole-genome bisulfite sequencing of neonatal brain and liver revealed stochastic influence on DNA methylation that was mostly tissue-specific, with some perturbations likely originating as early as gastrulation. DNA methylation differences were enriched in non-coding genomic regions with regulatory potential indicative of broad effects of alcohol on genome regulation. Replication studies in human cohorts with fetal alcohol spectrum disorder suggested some effects were metastable at genes linked to disease-relevant traits including facial morphology, intelligence, educational attainment, autism, and schizophrenia. In our murine model, a maternal diet high in folate and choline protected against some of the damaging effects of early moderate PAE on DNA methylation. Our studies demonstrate that early moderate exposure is sufficient to affect fetal genome regulation even in the absence of overt phenotypic changes and highlight a role for preventative maternal dietary interventions.

    1. Developmental Biology
    2. Neuroscience
    Pengfei Liu, Xinyi Liu, Bin Qi
    Research Article

    To survive in challenging environments, animals must develop a system to assess food quality and adjust their feeding behavior accordingly. However, the mechanisms that regulate this chronic physiological food evaluation system, which monitors specific nutrients from ingested food and influences food-response behavior, are still not fully understood. Here, we established a low-quality food evaluation assay system and found that heat-killed E. coli (HK-E. coli), a low-sugar food, triggers cellular UPRER and immune response. This encourages animals to avoid low-quality food. The physiological system for evaluating low-quality food depends on the UPRER (IRE-1/XBP-1) - Innate immunity (PMK-1/p38 MAPK) axis, particularly its neuronal function, which subsequently regulates feeding behaviors. Moreover, animals can adapt to a low-quality food environment through sugar supplementation, which inhibits the UPRER -PMK-1 regulated stress response by increasing vitamin C biosynthesis. This study reveals the role of the cellular stress response pathway as physiological food evaluation system for assessing nutritional deficiencies in food, thereby enhancing survival in natural environments.