Cis-interactions between Notch and its ligands block ligand-independent Notch activity

  1. William Hunt Palmer
  2. Dongyu Jia
  3. Wu-Min Deng  Is a corresponding author
  1. Florida State University, United States

Abstract

The Notch pathway is integrated into numerous developmental processes and therefore is fine-tuned on many levels, including receptor production, endocytosis, and degradation. Notch is further characterized by a two-fold relationship with its Delta-Serrate (DSL) ligands, as ligands from opposing cells (trans-ligands) activate Notch, whereas ligands expressed in the same cell (cis-ligands) inhibit signaling. We show that cells without both cis and trans ligands are able to mediate Notch-dependent developmental events during Drosophila oogenesis, indicating ligand-independent Notch activity occurs when the receptor is free of cis and trans ligands. Furthermore, cis-ligands can reduce Notch activity in endogenous and genetically-induced situations of elevated trans-ligand-independent Notch signaling. We conclude that cis-expressed ligands exert their repressive effect on Notch signaling in cases of trans-ligand independent activation, and propose a new function of cis-inhibition which buffers cells against accidental Notch activity.

Article and author information

Author details

  1. William Hunt Palmer

    Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dongyu Jia

    Department of Biological Science, Florida State University, Tallahassee, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wu-Min Deng

    Department of Biological Science, Florida State University, Tallahassee, United States
    For correspondence
    wumin@bio.fsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Utpal Banerjee, University of California, Los Angeles, United States

Version history

  1. Received: August 19, 2014
  2. Accepted: December 6, 2014
  3. Accepted Manuscript published: December 8, 2014 (version 1)
  4. Version of Record published: January 8, 2015 (version 2)

Copyright

© 2014, Palmer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,776
    views
  • 374
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Hunt Palmer
  2. Dongyu Jia
  3. Wu-Min Deng
(2014)
Cis-interactions between Notch and its ligands block ligand-independent Notch activity
eLife 3:e04415.
https://doi.org/10.7554/eLife.04415

Share this article

https://doi.org/10.7554/eLife.04415

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.